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Abstract—The deployment of ML serving applications, fea-
turing multiple inference functions on serverless platforms, has
gained substantial popularity, leading to numerous developments
of new systems. However, these systems often focus on optimizing
resource provisioning and cold start management separately,
ultimately resulting in higher monetary costs.

This paper introduces SMIless, a highly efficient serverless
system tailored for serving DAG-based ML inference in hetero-
geneous environments. SMIless effectively co-optimizes resource
configuration and cold-start management in the context of
dynamic invocations. This is achieved by seamlessly integrating
adaptive pre-warming windows, striking an effective balance
between performance and cost. We have implemented SMIless
on top of OpenFaaS and conducted extensive evaluations using
real-world ML serving applications. The experimental results
demonstrate that SMIless can achieve up to a 5.73× reduction in
the overall costs while meeting the SLA requirements for all user
requests, surpassing the performance of state-of-the-art solutions.

Index Terms—Serverless, DAG-based Inference, Dynamic In-
vocation

I. INTRODUCTION

Serverless computing has emerged as a highly promising
computing paradigm in the modern cloud-native era, distin-
guished by its fine-grained compute elasticity, pay-per-use
model, remarkable scalability, and the convenience it offers
for development and maintenance [1], [2]. The inherent ad-
vantages and flexibility of serverless platforms have catalyzed
numerous recent initiatives to mitigate machine learning (ML)
inference applications to this architecture [3], [4], [5], [6], [7].

In ML serving, it is often crucial to provide comprehen-
sive services by incorporating multiple ML inference models
within a single application [8]. Consider, for instance, a con-
versational Artificial Intelligence pipeline composed of three
modules: an automatic speech recognition module that con-
verts input audio waveforms into text, a large language model
(LLM) module that comprehends the input and generates a
relevant response, and a text-to-speech module responsible
for rendering the LLM’s output into speech [9]. The various
models are typically organized in parallel, sequentially, or
a combination of both, and can be represented as Directed
Acyclic Graphs (DAGs) [5], [10], [11], [12], [13].

*Corresponding authors

ML inference applications often experience widely varying
arrival patterns of service requests [14], [10]. Consequently,
traditional server-centric deployments are prone to resource
overprovisioning problems. Leveraging serverless computing,
applications can precisely tailor their resource utilization by
dynamically launching different functions, typically triggered
at or near the time of receiving an invocation request, de-
pending on the pre-warming and keep-alive mechanisms im-
plemented to mitigate cold starts [15], [16].

With the shift towards serverless computing, the landscape
of underlying hardware resources for serving ML inference in
production clusters is undergoing increased heterogeneity [17],
[10], [18]. This includes a wide variety of accelerators such
as GPUs, TPUs, and FPGAs, all tailored to enhance the per-
formance of ML applications [18], [19], [20]. While high-end
accelerators can effectively mitigate the inference overhead,
they also come with a significant cost burden. For instance,
incorporating a V100 GPU can yield up to a 10× improvement
in inference latency for ResNet50 compared to a CPU with
four cores. However, it is worth noting that the GPU’s unit
cost is 16× higher than that of the CPU in AWS cloud [18].
Consequently, this heterogeneity presents a design trade-off to
balance between performance and monetary cost.

Crafting efficient resource provisioning policies for deploy-
ing ML applications with DAG topologies on a serverless
platform that harnesses heterogeneous hardware poses sig-
nificant challenges. On one hand, the resource configuration
of one function influences the cold-start management of all
succeeding functions within a DAG application, creating a
cascading effect. Consequently, it becomes essential to design
resource configuration and cold-start management policies of
all functions in tandem to achieve optimal performance. On the
other hand, the highly dynamic nature of invocation patterns
means that a policy suitable for one invocation may not be
suitable for another, necessitating global optimization that
takes into account future invocations, thereby adding layers
of complexity to the task.

Traditional literature on resource allocation for DAG-based
applications in heterogeneous environments neglects to ad-
dress cold-start issues, resulting in resource wastage and
a failure to meet SLA requirements for end-to-end (E2E)
latency [21], [22], [23]. Conversely, current research focus-

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE



Image Recognition

Natual Language
Processing

Question & Answer Text to Speech

Fig. 1: The processing flow of an IPA application [5].

ing on ML serving applications using serverless computing
predominantly emphasizes isolated optimizations [4], [24],
[25], [26], [27], or completely disregards the DAG struc-
ture [17]. Specifically, existing works tend to handle cold-
starts and resource provisioning as separate entities, falling
short in managing dynamic invocation arrivals and resulting in
significantly elevated monetary costs. Furthermore, approaches
that entirely neglect DAG structures risk substantial reductions
in the overall resource utilization.

This paper presents SMIless, a new system for Serving
DAG-based ML Inference applications using serverless com-
puting across heterogeneous resources. The distinctive aspect
of SMIless lies in its design of adaptive pre-warming windows,
which are dynamically updated based on both the function’s
position within the DAG topology and the invocation patterns.
Moreover, SMIless tackles the cascading effect by reformulat-
ing a manageable path search problem. During the path search
process within a multi-way tree, each node traversed represents
a critical decision for heterogeneous resource configuration
and the cold-start mitigation policy of all functions. To ex-
pedite the search for paths that meet the minimum cost and
end with the node satisfying the SLA requirement, SMIless
utilizes an efficient ordering mechanism to minimize the
search overhead. Addressing the difficulty posed by extensive
search space, SMIless employs a decomposition approach
where the complex DAG is divided into multiple simple paths
and each path is optimized in parallel. Furthermore, SMIless
implements dynamic batching and effective scaling to handle
burst workloads resulting from multiple invocations arriving
within a short timeframe.

We have implemented SMIless using the popular framework
OpenFaaS [28]. The SMIless system comprises a profiler
that effectively measures the inference and initialization times
of individual functions. Additionally, SMIless incorporates
new online predictors to accurately forecast request arrival
patterns. The implementation also supports GPU multiplexing,
enabling a function instance to utilize only a fraction of the
available GPU. We evaluate SMIless using real-world ML
applications [5] and workloads similar to those employed in
Azure Functions [29]. The experimental results substantiate
that SMIless can achieve a remarkable up to 5.73× reduction
in overall costs without violating the SLA requirement for E2E
latency when compared to existing solutions. To summarize,
we have made the following contributions in this paper:
• We have recognized the significance of effectively managing

dynamic invocation arrivals in co-optimizing heterogeneous

HAP TG TRS
Inference Functions

0

2000

4000

6000

La
te

nc
y 

(m
s) CPU Init

GPU Init
CPU Running
GPU Running

CPU GPU
0.00000

0.00025

0.00050

0.00075

Pr
ice

 ($
/s

)

Fig. 2: Inference latency under different hardware. The price
comparison is made with reference to a CPU server with 16
cores and a GPU server equipped with one V100 in AWS [40].

resource configuration and cold-start management.
• We have designed an adaptive pre-warming policy tailored

to the DAG topology of ML serving applications.
• We have developed a scalable system that efficiently man-

ages ML serving with serverless computing. This system
makes optimal use of heterogeneous resources.

II. BACKGROUND AND MOTIVATION

A. ML Serving under Serverless Platform

In production-level ML serving applications, inference is
typically performed on multiple ML models to provide com-
prehensive services [9], [30], [10], [31]. As an example, Fig. 1
demonstrates a popular intelligent personal assistant (IPA) ap-
plication designed to answer questions about given images [5].
When a user initiates a request to the IPA application, it
triggers several invocations corresponding to distinct inference
stages, including Natural Language Processing (NLP) [32],
[33], Image Recognition (IR) [34], [35], Question and An-
swer [36], and Text to Speech [37].

In a serverless platform, the entire application is divided
into distinct modules, with each function dedicated to serving
a specific model [38], [39]. Consequently, the interactions
between these functions can be represented as a DAG [10].

B. Heterogeneous Serverless Computing

In production environments, the utilization of high-end and
low-end hardware resources for serverless functions involves
distinct design trade-offs that must be carefully considered.

As shown in Fig. 2, there is a significant disparity in the
inference latency of three commonly used ML models, namely
Human Activity Pose (HAP), Text Generation (TG), and
Translation (TRS), when executed on a 16-core CPU compared
to a V100 GPU. Simultaneously, there exists a substantial price
difference between these two hardware options. In particular,
the inference latency of the TRS model with a warm start
reduces by approximately 10× when running on a GPU,
while the unit price of the GPU is only 8× higher than that
of the CPU. Consequently, executing the TRS model on a
GPU is more cost-effective. However, during the initial phase
of serving when the function initializes to handle the first
request, known as a cold start, the inference latency of the
TRS model on a V100 GPU surpasses that of a CPU due to
the associated high initializing overhead, rendering the GPU
devoid of advantages.
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C. Resource Management with Dynamic Invocations

Balancing the optimal trade-off between E2E latency and
cost for serving ML applications with a DAG under hetero-
geneous serverless computing presents significant challenges,
necessitating global co-optimization across all functions.

1) Challenges: The primary challenge stems from the
cascading effect triggered by the resource configuration of
one function on the cold-start management of succeeding
functions. The selection of a heterogeneous configuration
directly shapes inference latency, thereby exerting a substantial
influence on the overlap between function execution and
initialization. Notably, greater inference latency for a function
amplifies the opportunity for a broader overlap window, miti-
gating prolonged keep-alive periods and consequently cutting
down on costs. However, the extent of this overlap is also
contingent upon the initialization time of the succeeding func-
tion, which, in itself, is closely intertwined with its resource
configuration, further impacting the subsequent functions in
line. Thus, the configuration of each function sets off a
cascading effect on succeeding functions within the DAG.

The second challenge arises from the dynamic nature
of invocation patterns within inference applications. In
scenarios with a high invocation arrival rate, the resource con-
figuration and cold-start management for a specific invocation
may not be optimal for subsequent invocations in the long run.

2) Limitation of Existing Works: Current resource man-
agement schemes for serverless computing are inadequate in
addressing the aforementioned challenges. To illustrate this,
we present a straightforward example in Fig. 3 where an ML
application, consisting of three functions in a pipeline.

• Orion [4]: This method selects the resource configuration
under the assumption of right pre-warming, where the execu-
tion of each function perfectly overlaps with the initialization
of the succeeding function. While this assumption can greatly
simplify co-optimization, it holds true only when the inter-
arrival time between different invocations is substantial, result-
ing in suboptimal outcomes when multiple invocations arrive
within a short period. As depicted in Fig. 3(a), in line with the
cost-minimizing result and SLA requirement of 6.5 seconds
for E2E latency, Orion assigns the execution of F1 and F2 to
GPU, while F3 is executed on CPU. However, upon the arrival
of the second invocation, Orion needs to launch additional
instances for both F2 and F3 to prevent SLA violation. An

optimal approach, as shown in Fig. 3(c), is to launch F2 on
the CPU with pre-warming and F3 on the GPU with right
keep-alive, considering the second invocation. This leads to a
37.7% decrease in the overall cost.

• IceBreaker [17]. This approach individually manages the
resource configuration and cold-start policy for each function,
struggling to effectively leverage the DAG topology for co-
optimization. As shown in Fig. 3(b), under IceBreaker, F2 is
warmed up on the CPU owing to its high efficiency-to-cost
ratio. Simultaneously, leveraging the GPU’s superior speedup,
both F2 and F3 are warmed up on the GPU. However, due
to the lack of consideration for the DAG structure, IceBreaker
cannot leverage right pre-warming, resulting in a total cost that
is 33% higher than the optimal solution.

III. SMILESS ARCHITECTURE

To tackle the challenges outlined in § II-C1, we present
SMIless, a serverless framework for optimizing the execution
of ML serving applications with highly dynamic invocations.

A. Key Design Ideas

I1 : Leveraging adaptive pre-warming to manage dynamic
invocations. SMIless introduces an innovative adaptive cold-
start policy for functions within a DAG application. This
policy facilitates the calculation of the pre-warming size of all
serverless functions based on a given resource configuration
and invocation arrival rate. Such capability empowers SMIless
to effectively formulate the E2E delay and overall costs of a
complex DAG application.
I2 : Addressing the cascading effect through path search
formulation. SMIless initiates its optimization approach by
redefining the problem as a path search in a multi-way tree.
Each distinct combination of the adaptive cold start strategy
and resource allocation policy for all functions within the
DAG is treated as a unique node, with alterations in these
combinations represented as edges. SMIless systematically
navigates this tree, prioritizing combinations that result in
minimized costs. This strategic exploration enables SMIless
to effectively address the cascading effect, approaching the
optimal solution without the need for exhaustive exploration.

B. System Overview

As shown in Fig. 4, SMIless is composed of three main
modules: the Optimizer Engine, the Offline Profiler, and the
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Fig. 4: System architecture of SMIless.

Online Predictor. Upon a developer’s submission of a ML
application to the serverless platform, SMIless generates the
execution strategy through the Optimizer Engine, leveraging
profiles of each function produced by the Offline Profiler, and
incorporating predicted invocation patterns from the Online
Predictor. The execution strategy is then deployed by the
Container Manager.

The Offline Profiler ❶ operates in the background, sys-
tematically gathering execution and initialization times from
diverse configurations of deployed functions. Utilizing these
traces, the Offline Profiler constructs a tailored model for
profiling the inference time and the initialization time.

The Online Predictor consists of two components: the
Inter-arrival Time Predictor ❷ and the Invocation Predictor ❸.
The Online Predictor collects the information regarding
the application’s invocation pattern and then uses the Inter-
arrival Time Predictor to construct a model specific to each
application to predict the inter-arrival time, which aids in
managing cold-start scenarios and hardware configuration. The
Invocation Predictor predicts a limit for the potential number
of invocations within each time window, enabling the Auto-
scaler to effectively handle burst workloads.

Once receiving ML requests from the developer, SMIless
uses the Optimizer Engine to produce the optimal initial-
ization and execution strategies through three key modules:
the Workflow Manager ❹, Strategy Optimizer ❺, and Auto-
scaler ❻. The Workflow Manager breaks down the DAG into
multiple simplified subgraphs. After fetching the optimized
strategy of each subgraph from the Strategy Optimizer, the
Workflow Manager intelligently combines these strategies
to minimize the overall cost. Subsequently, the Auto-scaler
operates dynamically to control the scaling of all inference
functions based on the predicted invocation number and the
function’s hardware configuration.

IV. OFFLINE PROFILING AND ONLINE PREDICTION

A. Function Profiling

The process of function execution consists of two stages:
the initialization stage and the inference stage. To capture the
initialization and inference times of each function instance,

SMIless utilizes the event tracking method, allowing the
system to accurately record the time taken for each stage.
These timing records are stored using Prometheus [41], a
widely used open-source tracing coordinator. In addition to
timing information, Prometheus also stores details about the
hardware configuration and setting of batch size.

1) Profiling initialization time: The initialization process
of the inference function encompasses data accessing, model
loading, and function dependency initialization steps. In the
case of starting a new instance of an inference function,
SMIless first accesses the container image of the inference
model from the remote repository. Subsequently, it initializes
a container on the appropriate host. Although the size of
the container image remains constant, the initialization time
can still fluctuate due to shared resources contention such as
network bandwidth, PCIe bandwidth, and memory bandwidth.
To address this issue, SMIless’ Offline Profiler calculates
both the average µ and the standard deviation σ among all
the initialization time for each function and then utilizes
(µ+n×σ) as a robust measurement of the initialization time.

The initialization process on the GPU device involves
initializing the CUDA context and runtime for inference
frameworks (such as PyTorch and TensorFlow), allocating
GPU capacity, and transferring the model from host memory
to GPU memory. These additional operations result in a longer
initialization time compared to that of the CPU. Consequently,
the Offline Profiler conducts separate estimations for the
initialization time of each inference function on both the CPU
and GPU. SMIless repeats the initialization process 10 times
for each function to collect a sufficient number of records.

2) Profiling inference time: The inference time of a func-
tion is highly impacted by the input batch size and the
hardware configuration, which encompasses factors such as
the number of CPU cores, memory size, and GPU quantity
of the container [14], [42]. Additionally, during the inference
process, only a small amount of memory of the container
is typically required to cache the incoming data from the
invocation request, in addition to the memory used for hosting
the container image. Beyond a certain threshold known as
the knee point [14], increasing the memory capacity does not
yield significant performance improvements. Hence, SMIless
ensures that the inference function is equipped with a hard-
ware configuration that includes a memory capacity slightly
above the knee point, effectively preventing memory from
becoming a bottleneck. Moreover, SMIless leverages MPS
(Multi-Process Service) [43] to partition a GPU into multiple
portions and distribute them among several instances. In order
to mitigate resource contention, such as PCIe bandwidth and
GPU memory, among the instances sharing the same GPU,
the minimum unit of the GPU allocation is set at 10%.

SMIless primarily focuses on adjusting the CPU core count
or GPU quantity to switch between different configurations.
Hence, the Offline Profiler develops learning models to profile
the inference time, taking into account factors such as batch
size B, the number of CPU cores (# of CPU cores), or GPU
proportions (% of GPU). Due to the excellent parallelism



offered by deep learning frameworks like PyTorch and Ten-
sorFlow during model inference, the Offline Profiler effec-
tively captures this acceleration effect based on the Amdahl’s
law [44]. Specifically, when it comes to CPU configurations,
the learning model is expressed as follows:

Inference time = λc×B×
( αc

# of CPU cores
+βc

)
+γc. (1)

Here, αc represents the computational volume required for
the model on the CPU, while βc accounts for the additional
time needed during CPU execution, such as context switching,
instruction and data load/store operations, and cache misses.
Furthermore, a coefficient λc is introduced to capture per-
formance degradation stemming from the architecture’s use
of multiple CPU cores, which may result in increased cache
misses and branch prediction errors when processing batches
of invocation requests. Finally, the network transmission time
γc is incorporated into the E2E inference time. To minimize
profiling overhead, SMIless restricts the maximum CPU cores
to a ratio determined by the unit cost of GPU to CPU.

For the GPU backend, the learning model is expressed by:

Inference time = λg ×B ×
( αg

% of GPU
+ βg

)
+ γg. (2)

In contrast to the CPU backend, model inference on the
GPU backend involves more processing steps, including data
transmission between host memory and GPU memory, as
well as frequent synchronization of control flow and data
flow [45]. As a result, the parameters of the learning model
need to be determined separately compared to their CPU
counterparts. The parameters {λi, αi, βi, γi}i=c,g are obtained
through curve-fitting for each function.

B. Online Prediction

Upon receiving invocation requests from users, the Gateway
in SMIless forwards this information to the Online Predictor
for the purpose of counting the invocation number received
for each application within a specified time window, which is
set to one second under SMIless.

1) Predicting the invocation number: The Invocation Pre-
dictor forecasts the anticipated invocation number for each
application within the next time window. To prevent underes-
timation and avoid SLA violations, the Invocation Predictor
adopts a classification method over a regression approach,
utilizing the LSTM model [24]. Specifically, the Predictor di-
vides the prediction space into multiple buckets and determines
the upper bound of the bucket as the prediction. The bucket
size is established to be equal to the minimum batch size
of the application’s functions. To train the LSTM model, the
input data consists of a time sequence that encompasses the
invocation numbers within past time windows. The length of
the input sequence is tailored to each individual application.

2) Predicting the inter-arrival time: The Invocation Pre-
dictor is also capable of predicting the inter-arrival time,
which essentially represents the time interval between two
consecutive non-zero predictions of invocation numbers. How-
ever, the classification method employed to establish an upper
bound can easily lead to estimation inaccuracies in inter-arrival

times. Consequently, SMIless introduces a dedicated Inter-
arrival Time Predictor. This Predictor utilizes a dual-input
approach, utilizing both the time series of inter-arrival time
and invocation number to prevent potential overestimations
that may lead to SLA violations. It incorporates two distinct
LSTM modules to process these inputs separately, merging
their respective hidden state outputs. This merged output then
passes through an activation layer and a linear layer to predict
the inter-arrival time for the subsequent invocation accurately.

V. SMILESS RESOURCE OPTIMIZATION

A. Co-optimization Framework

The primary objective of the SMIless Optimizer Engine is to
minimize the comprehensive cost associated with function ex-
ecution, ensuring adherence to SLA requirements for the E2E
latency of all user requests. This execution cost encompasses
the function initialization cost, inference cost, as well as keep-
alive cost. Due to the inherent heterogeneity of the underlying
hardware infrastructure, each function has various options for
configuring its running instance. Specifically, for function k,
we represent its hardware configuration as ⋆k and its cold
start management policy as △k. In this context, ⋆k ∈ C and
△k ∈ S, where C denotes the set of all possible configurations
and S represents the set of policies for cold-start management.
The unit execution cost U(·) is solely dependent on ⋆k, while
the associated execution time Ek(·) is influenced by both
⋆k and △k. Consequently, the execution cost for the entire
function k, denoted as Ck(·), can be written as:

Ck(⋆k,△k) = Ek(⋆k,△k) · U(⋆k). (3)

Considering that SMIless needs to manage N functions
within a DAG graph representing an ML serving application,
the overall optimization problem can be formulated as:

min
{χ⃗,φ⃗}

N∑
k=1

Ck(⋆k,△k), subject to, L(χ⃗, φ⃗) ≤ SLA. (4)

This problem involves two optimization vectors: χ⃗ and φ⃗,
where χ⃗ =

{
⋆1, · · · , ⋆N

}
, φ⃗ =

{
△1, · · · ,△N

}
. The function

L(χ⃗, φ⃗) captures the the E2E latency of the application under
the configuration χ⃗ × φ⃗. This problem constitutes a complex
combinatorial optimization problem, which can be readily
reduced to the Constrained Shortest Path Problem, a well-
known NP-hard problem [46].

B. Adaptive Cold-Start Management

To address the optimization problem, SMIless proposes an
innovative design known as ”adaptive cold-start management”.
This design aims to enable dynamic updates of the pre-
warming size of each individual function based on DAG
topology and invocation patterns. Building on this policy,
SMIless is able to compute the latency function L(χ⃗, φ⃗).

1) Adaptive pre-warming: To demonstrate the idea behind
adaptive pre-warming, let us consider a straightforward DAG
consisting of two functions, F1 and F2, executed sequentially
in a pipeline, as shown in Fig. 5. The inter-arrival time between
two successive invocations is denoted as IT, the time required
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for loading Fk during initialization is denoted as Tk, and the
inference time for Fk is Ik, Both of Tk and Ik depend on the
hardware configuration ⋆k.

Case I: Low invocation arrival rate. In scenarios where
the arrival rate is low, there is significant flexibility to select
a larger pre-warming window size, thereby minimizing the
overall cost. Specifically, when T2+ I2 < IT, the pre-warming
size for F2 under SMIless is determined as (IT − T2 − I2),
and the corresponding warming-up process begins I2 units
of time earlier before the completion of the successor F1,
as depicted in Fig. 5(a). In other words, after the inference
process of an invocation is completed on F2, the function will
be unloaded and remain idle for a duration of (IT− T2 − I2)
before being loaded again to process the next invocation. As
a result, the initialization overhead of F2 is fully overlapped
with the inference process of F1. In this scenario, the following
relationship holds:

L(χ⃗, φ⃗) = I2 + I1, and C2 = (T2 + I2) · U(⋆2). (5)

By selecting an appropriate hardware configuration for all
functions such that L(χ⃗, φ⃗) remains within the SLA, this
dynamic pre-warming approach fully mitigates the negative
impact of long initialization time and ensures optimal cost
efficiency, as demonstrated in the subsequent theorem.

Theorem 5.1: When I2 + I1 < SLA and T2 + I2 < IT,
the warming-up policy of SMIless guarantees the minimum
overall execution cost.

The theorem discussed above also implies that when faced
with strict SLA requirements, SMIless should prioritize a more
advanced hardware configuration for F2. This selection will
result in a smaller inference time I2 and subsequently a larger
pre-warming window size.

Case II: High invocation arrival rate. In cases where the
arrival rate is high, there is little to no opportunity for pre-
warming a function. Specifically, when T2 + I2 ≥ IT, two
possible strategies exist for handling subsequent invocations
of F2: 1) terminating the instance after the last invocation
and creating a new one before the next invocation arrives, or
2) keeping live the function after the last invocation. Under
the first strategy, two instances exist concurrently, leading to
an execution cost of (T2 + I2) · U(⋆2) for each invocation
of F2, as illustrated in Fig. 5(b). In contrast, the second
strategy keeps the instance alive even if the last invocation
has completed and the subsequent invocation has not yet
arrived, incurring a cost of IT · U(⋆2) for each invocation of
F2. Hence, SMIless chooses the second strategy, effectively
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setting the pre-warming window size to zero, yielding the same
expression of L(χ⃗, φ⃗) as that in Eq. (5).

The above comparison also implies that, when the SLA
requirement is lenient, there is a higher likelihood of selecting
low-end hardware for each function and keeping the corre-
sponding instance alive for a long period, thereby minimizing
the occurrence of initialization.

2) Adaptive batching: During peak workloads on a server-
less platform, which refers to a situation where multiple
invocations arrive within a short period of time, processing in-
vocations sequentially within each function instance can easily
result in SLA violations. As illustrated in Fig. 5(c), even with
a zero pre-warming window size configuration, subsequent
invocations are still required to wait for the completion of
early-arrived invocations due to the smaller inter-arrival time
IT compared to the function inference time I2. To address
this issue, the Auto-scaler under SMIless incorporates adaptive
batching, where multiple invocations are batched together for
parallel processing, reducing the waiting time. However, it
should be noted that under this policy, the inference time of
F2 is increased compared to the sequential processing manner.
To ensure compliance with the SLA requirement, SMIless also
dynamically scales up to higher-end configurations as needed.

In cases where even higher-end hardware fails to meet
the SLA, the Auto-scaler implements dynamic scaling out by
launching multiple instances of the same function to handle the
increased workload. In such scenarios, the overall performance
metric L(χ⃗, φ⃗) can be characterized as the sum of inference
time for each individual function. Additionally, the execution
cost of each function Fk is calculated as the product of the
inter-arrival time IT and the unit cost U(⋆k).

C. Co-optimization Algorithm Design

Drawing on the formulations of the E2E latency L(χ⃗, φ⃗)
and the overall execution cost

∑N
k=1 Ck(⋆k,△k), the Strategy

Optimizer optimizes the hardware configuration and associated
cold-start management policy for all functions through Top-
K path searching combined BFS (Breadth-First Search) with
DFS (Depth-First Search). To initiate the path-search process,
the Strategy Optimizer employs a multi-way tree to construct
a comprehensive search space. In the multi-way tree, each
node represents the hardware configurations and corresponding
cold-start management policies for all functions within the ap-
plication, thereby effectively addressing the cascading effect.
By following a path from the root node to a leaf node, all the
functions in the application are traversed, resulting in a unique
solution to the original optimization problem. Additionally,



each node along the path contains a cost value that indicates
the expense associated with the function based on the current
policy.

1) Top-K path search process: Fig. 6 illustrates a straight-
forward example demonstrating the path-search process with
top-1 selection. The path search algorithm commences at
the root node T 0, which represents a combination of the
configuration χ⃗0 and the policy φ⃗0 that result in the low-
est overall execution cost. Under the configuration χ⃗0, all
functions execute on hardware that incurs the lowest cost,
determined by

⋆0k = argmin
⋆k∈C

Ck(⋆k,△k),△k = adaptive pre-warming. (6)

If the corresponding L(χ⃗0, φ⃗0) falls within the SLA, the
search process is concluded, and

{
χ⃗0, φ⃗0

}
is deemed the

optimal solution. In case the SLA is not met, the Strategy
Optimizer shifts its focus to T 1

1 , where F1 is assigned hard-
ware resulting in the second smallest execution cost, and the
remaining functions run on hardware leading to the shortest
inference time. If the resulting latency meets the SLA, the
Strategy Optimizer proceeds to traverse T 1

2 , assigning F2 the
most cost-effective hardware while other functions continue on
the most advanced hardware. The Strategy Optimizer checks if
T 1
2 satisfies the SLA, and if so, SMIless proceeds to T 1

3 , where
F3 is assigned the most cost-effective hardware. However, if
T 1
2 fails to meet the SLA, the Strategy Optimizer moves to T 2

2 .
Here, F2 is assigned the second most cost-effective hardware,
as it is infeasible for the present configuration of F2 to meet
the SLA. SMIless repeats this process until it reaches a leaf
node. At this stage, the Strategy Optimizer has successfully
identified a path satisfying the SLA requirement.

The top-1 path search process can be seamlessly extended
to a top-K path search, further optimizing the overall execu-
tion cost. Specifically, upon meeting the SLA with the most
cost-effective strategy combination in layer li, the Strategy
Optimizer shifts focus to exploring the subsequent K − 1
strategy combinations with minimal costs that still fulfill the
SLA, rather than immediately delving into the next layer li+1

in the multi-way tree. After identifying the top-K strategy
combinations with the lowest costs within layer li, the Strategy
Optimizer progresses to layer li+1, pinpointing the top-K
lowest-cost nodes among all child nodes stemming from the
previously selected nodes in layer li. This iterative process
iterates until reaching the leaf node. However, it is crucial to
note that in scenarios where the DAG presents a lengthy path,
the Strategy Optimizer may spend excessive time exploring the
top-K lowest-cost strategy combinations, potentially leading to
suboptimal solutions, especially in highly dynamic invocation
scenarios. Consequently, this work solely focuses on the top-1
path search process.

2) Handling complex applications: When dealing with ap-
plications comprising intricate parallel branches, the Workflow
Manager decomposes the application’s DAG into multiple
subgraphs that only contain sequential dependency. The Strat-
egy Optimizer then executes the basic algorithm in parallel
for each subgraph to obtain an initial solution. To achieve a

solution with reduced cost, the Workflow Manager combines
the results obtained from these subgraphs.

The combining process begins by traversing the DAG
graph to identify the smallest substructure containing parallel
branches. Suppose the starting and end functions of a parallel
branch structure are Fs and Fe respectively, the Workflow
Manager traverses each path containing the functions Fs and
Fe in order to discover the configuration with the shortest
inference time, which is subsequently assigned as the final
configuration for both Fs and Fe. Following this, the Workflow
Manager updates the configurations of other functions along
these parallel branches to ensure that the overall E2E latency
of each path remains unchanged before and after combining
the subgraphs. The workflow Manager repeats this process
for the next minimum parallel substructure until all parallel
substructures have been processed.

3) Complexity Analysis: By employing DAG decomposi-
tion, the Strategy Optimizer can simultaneously handle each
decomposed simple graph, thereby making the algorithm’s
complexity dependent on the longest path’s length. Assuming
there are N functions along this longest path, with each
function having M hardware configuration candidates, the
algorithm first identifies the cost-minimizing configuration
combination for all functions. This process involves traversing
the longest path across the N functions and selecting the
most cost-effective configuration for each function. As a result,
the time complexity for obtaining the initial configuration is
O(N ·M · logM). If the end-to-end latency of the application
fails to meet the SLA requirement, the algorithm proceeds with
replacing hardware configurations for functions to reduce the
application’s latency. In the worst-case scenario, the algorithm
may need to traverse all M configurations of each of the
N functions to verify whether the end-to-end latency with
the current configuration meets the SLA requirement. Based
on Eq. (5), calculating the end-to-end latency for updating
the configuration of a single function involves summing the
end-to-end latency of the previous configuration combina-
tion with the incremental inference time resulting from the
current function’s configuration change, with an asymptotic
time complexity of O(1). Consequently, the algorithm’s time
complexity in the worst case is O(N · M). Therefore, the
overall time complexity of SMIless’ search algorithm remains
at O(N ·M · logM).

D. Container Autoscaling

At the start of each time window, the Optimizer En-
gine determines both the desired hardware configuration and
warming-up time for each function instance. In cases where the
corresponding inference time on the selected hardware exceeds
the predicted inter-arrival time, subsequent invocations of the
application may violate the SLA requirement, as illustrated
in Fig. 5(c). In such situations, the Optimizer Engine adopts
resource autoscaling to modify the hardware configuration and
number of function instances accordingly.

When predicting the number of invocations within the next
interval for a specific inference model, denoted as G, and



considering the required inference time as Is obtained from
the optimization algorithm in § V-C, the Auto-scaler selects
to batch B invocations for parallel processing within each
function instance. Consequently, the number of instances is
determined as G

B . In order to determine the optimal container
configuration and batch size, the Auto-scaler formulates the
following optimization problem:

min
{⋆k,B}

G

B
· IT · U(⋆k),

subject to, λc ×B ×
( αc

# of CPU cores
+ βc

)
+ γc ≤ Is.

(7)
This optimization problem applies when the inference function
is served under CPU resources. However, considering that the
GPU backend may potentially result in a lower cost, the Auto-
scaler also formulates the problem by using GPU instances.
In this case, the constraint in Expression (7) is replaced with
the corresponding GPU version:

λg ×B ×
( αg

% of GPU
+ βg

)
+ γg ≤ Is. (8)

The Auto-scaler employs multiple threads to solve the opti-
mization problems for all functions in parallel. When deal-
ing with each optimization problem, it adopts the Bisection
method to determine the optimal solution for B and the
corresponding configuration ⋆k.

VI. SYSTEM IMPLEMENTATION

SMIless, our serverless ML inference system, is imple-
mented on top of OpenFaaS [28], an event-driven computing
framework that utilizes Kubernetes [47]. Prometheus [41] is
used by SMIless during the runtime to capture and store data
relevant to inference functions. The Optimization Engine mod-
ule, Offline Profiling module, and Online Predictor module are
developed via the Python library in approximately 3K lines
of code. In addition, the Container Manager component is
implemented with 2K lines of Go code.

The Workflow Manager module leverages NetworkX [48] to
efficiently handle the DAG structure of each application. The
Optimization Engine module utilizes the Kubernetes Python
client library to monitor the submission of applications. To
enable parallel processing, the Strategy Optimizer module
incorporates the Python multi-processing library to generate
optimal strategies. The Auto-scaler module runs as a separate
backend process in Python, dynamically determining the scal-
ing strategy. Another backend process, the Offline Profiler,
continuously fetches running information of each inference
model from Prometheus for profiling purposes. Moreover,
the Online Predictor module operates in a separate process,
directly communicating with the Gateway to obtain invocation
patterns for training.

The Container Manager utilizes timers to control the start
and termination of each instance based on the function’s
pre-warming policy. We have implemented an Agent module
within each instance, which efficiently handles batched invo-
cation requests received from the invocation client in parallel.
The batchsize for each instance is stored in Kubernetes as a

IR DB QA

WL1:   AMBER Alert WL2:  Image-Query WL3:  Voice Asistant

FR

IR TRS

HAP

OD SR TGNER TTS

TM

Fig. 7: ML serving applications with DAG workflows.

Field Function Name Model Input
♦ Image Recognition (IR) ResNet50 [52]ImageNet [53]
♦ Face Recognition (FR) FaceNet ImageNet
♦ Human Activity Pose (HAP) ResNet50 [34] ImageNet
♡ DistilBert (DB) BERT [32] SQuAD [54]
♡Name Entity Recognition (NER) Flair [55] SQuAD
♡ Topic Modeling (TM) TweetEval [33] SQuAD
♡ Translation (TRS) T5 [56] SQuAD
□ Text Generation (TG) GPT2 [57] SQuAD
⋆ Speech Recognition (SR) Wav2Vec [58] SQuAD
⋆ Text To Speech (TTS) FastSpeech [37] SQuAD
♠ Object Detection (OD) YOLOv5 [59] COCO [60]
♣ Question Answering (QA) Roberta [36] SQuAD
♦ Image Classification. ♡ Language Modeling. □ Text Generation. ⋆
Audio Processing. ♠ Object Detection. ♣ Question Answering.

TABLE I: Inference models

ConfigMap, which is updated by the Auto-scaler module. Once
the inference tasks are completed, the Agent returns the results
back to the corresponding invocation client. The communica-
tion between the Agent and invocation client occurs through
HTTP requests, while the Agent effectively communicates
with the inference function’s process via RPC.

VII. EVALUATION

A. Experimental Setup

Applications. We utilize three popular ML serving applica-
tions, along with their corresponding topology depicted in
Fig. 7. Detailed descriptions of the inference functions can
be found in Table I. Unless explicitly stated otherwise, the
SLA target for each application is set to two seconds.
• AMBER Alert [49], [10] serves as an emergency alert sys-

tem for child abduction cases. It is activated when an image
is uploaded and subsequently conducts object detection to
identify and label vehicles and humans present in the image.
The application then generates an alert message that is
translated into various languages.

• Image Query [50], [5] generates natural language descrip-
tions of images as output for the user. It is activated when
the user sends an image to the server.

• Voice Assistant [51], [5] promptly addresses user voice
queries by converting the spoken input into text. It then
analyzes the text to generate appropriate responses, trans-
forming them into audio outputs for the user.

Load generator. We generate custom-shaped workloads based
on scaled-down invocation pattern traces obtained from the
Azure Function Dataset [61]. These function invocation traces
are used to simulate the invocation requests of applications
with a DAG workflow. We scale down the invocation interval
from one minute to two seconds and deploy a dedicated load
generator for each application, operating simultaneously. The
evaluation duration for each application spans 2 hours.
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System Settings. We evaluate SMIless on an 8-machine
cluster. Each machine is equipped with two 52-core Intel x86
Xeon Gold 5320 CPUs, 128GB of memory, and a Nvidia RTX
3090 GPU. The machines are connected via a 10GbE NIC
and they have CUDA 11.5 and cuDNN 8 installed. SMIless
executes serverless functions within container instances on the
cluster, utilizing both the CPU and GPU devices. The CPU
containers come in five different specifications, equipped with
1, 2, 4, 8, or 16 cores, which correspond to the AWS c6g
series instances [62]. The usage cost for these instances is
x×$0.034/hour, where x represents the number of CPU cores.
Furthermore, GPU resources for the containers are allocated in
units of 10% using MPS. The price for a container with 10%
GPU allocation is 10% of the price of AWS GPU instances
p3.2xlarge [63], which amounts to $3.06/hour.
Baselines. We benchmark SMIless against several state-of-
the-art serverless systems focused on optimizing resource
provisioning: GrandSLAm [5], IceBreaker [17], Orion [4], and
Aquatope [24]. Specifically, GrandSLAm is a holistic runtime
framework designed for multi-stage ML applications with
the goal of maximizing throughput while maintaining SLA
requirements. Aquatope is an uncertainty-aware QoS scheduler
for serverless workflows, utilizing Bayesian Optimization to
identify the optimal resource configuration.

B. E2E Performance

As illustrated in Fig. 8, it is crucial to note that SMIless
closely approximates the optimal solution (determined through
exhaustive search), incurring only an additional total cost of
50% across all three applications. Importantly, as the complex-
ity of the DAG increases, the cost disparity between SMIless
and the optimal solution diminishes. We also observe that
SMIless achieves a cost reduction of up to 5.73× compared
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Fig. 10: The E2E performance under different SLA settings.
(a) Total execution cost. (b) SLA violation ratio.

to IceBreaker, while maintaining SLA compliance without
any violations. This is because IceBreaker solely considers
invocation numbers and function speed-ups across different
hardware, disregarding the DAG structure. Consequently, it
resulted in a high proportion of long-keeping-alive instances
with GPU resources, causing most functions to remain active
on GPUs, as illustrated in Fig. 9(a).

Orion experiences a relatively high violation ratio of ap-
proximately 40% due to the lack of effectively co-optimizing
hardware selection and cold-start mitigation. As a result,
Orion cannot fully leverage invocation patterns to optimize the
configuration of different functions, resulting in a cost that is
twice as high as SMIless. Conversely, Aquatope achieves a low
cost but at the expense of a high SLA violation ratio, which
can reach up to 40%. Although Aquatope considers invocation
patterns and designs resource configurations based on the DAG
structure, the frequent initialization of containers leads to many
cold-starts. To validate this argument, we evaluate the fraction
of function reinitialization during the entire experiment, as
depicted in Fig. 9(b), where Aquatope exhibits the most
frequent initialization among all solutions. While GrandSLAm
demonstrates low E2E latency due to fewer initialization times,
the absence of cold-start management results in a cost that is
as high as 2.46× that of SMIless.

Furthermore, we investigate the impact of SLA settings on
the overall execution cost. As shown in Fig. 10(a), Orion
demonstrates the greatest benefit from stringent SLA settings.
Specifically, when the SLA exceeds 5 seconds, Orion incurs
only double the costs compared to SMIless. Fig. 10(b) pro-
vides the corresponding SLA violation ratio. Importantly, it
should be noted that regardless of the SLA settings, SMIless
consistently achieves the lowest cost with no SLA violations.
Moreover, SMIless demonstrates stable performance in terms
of total costs, attributed to its path search strategy, which
updates the hardware configuration and cold-start policy of
only a few functions when the SLA requirement changes.

C. Source of Improvement

In this section, we deep-dive into the reasons behind SMI-
less’ wins in both the cost and SLA compliance.

1) Offline profiling: First, the profiling methodology has a
heavy impact on the SLA violation ratio. During the experi-
ments, the Profiler utilizes running traces that are 30 minutes
long for each function to perform profiling. As depicted in
Fig. 11(a), when the average initialization time is used as the
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Fig. 11: Offline profiling results under SMIless.

measurement, the SLA violation ratio can reach as high as
34%. However, with SMIless, by incorporating 3× uncertainty,
SLA violations can be completely avoided.

Additionally, the profiling of function inference time plays a
crucial role in accurately guiding the co-optimization process.
As depicted in Fig. 11(b), the profiling methods demonstrate
high accuracy. All functions exhibit a Symmetric Mean Ab-
solute Percentage Error (SMAPE) of less than 20%, with the
overall average being below 8%. It is worth noting that the
prediction of GPU inference time is more precise compared
to CPU inference time. This discrepancy is attributed to the
fact that execution on the CPU is more susceptible to inter-
ference. The exceptional accuracy of inference time profiling
is achieved with only 5×5=25 samples on the CPU backend
(encompassing 5 types of batch sizes from 21∼25 and 20∼24
CPU cores) and 50 samples on the GPU backend (covering
10 different percentages of GPU allocation).

2) Online prediction: Second, the accurate prediction en-
ables SMIless to perform reliable proactive resource provi-
sioning in case of highly dynamic invocation arrivals. We
compare results obtained from different predictors trained on a
1-hour trace and tested on an 21-hour dataset, which exhibits
a variance-to-mean ratio of invocation numbers greater than
two. These predictors are: 1) XGBoost [64]; 2) ARIMA [61],
a widely adopted time-series sequence model; 3) FIP [17], a
method based on Fourier Transformation used by IceBreaker;
4) SMIless, employing one (or two) LSTM module with 30
(128) hidden states for invocation number (inter-arrival time).

As shown in Fig. 12(a), the predictor for invocation num-
ber achieves an underestimation error of 3%, outperforming
baselines, primarily attributed to its superior classification
approach. To compensate for this error, SMIless incorporates
an additional 3% to the original quantity. Without this com-
pensation, the SLA violation ratio would escalate to 5%. Re-
garding overestimation, SMIless estimates a marginal increase
of 4.32% in the container number with the CPU backend and
1.85% with the GPU backend when compared to the resource
usage based on the true invocation number.

The predictor for inter-arrival times exhibits an impressively
low MAPE of just 2.45%, as depicted in Fig. 12(b). Moreover,
it exhibits a probability of over-estimations of less than 0.64%,
attributed to its innovative design featuring two STM modules.
In comparison to employing a single LSTM module with inter-
arrival times as the sole input (referred to as SMIless-S), this
configuration yields a remarkable reduction in over-estimation
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errors by a factor of 10. This high accuracy enables SMIless
to achieve perfect overlap between function initialization and
inference within the same application. Notably, substituting
the LSTM predictor with ARIMA would result in an overall
cost increase of 18%.

3) Co-optimization: The key contribution to the improve-
ment achieved by SMIless can be attributed to the effec-
tive co-optimization of resource configuration and cold-start
management. We evaluate two variants of SMIless: SMIless-
No-DAG and SMIless-Homo, where the former disregards
the DAG structure and warms up all function instances
simultaneously based on inter-arrival time, while the latter
only utilizes CPU backend for resource configuration. As
demonstrated in Fig. 13(a), the overall cost under SMIless-
No-DAG is 39% higher than that of SMIless, emphasizing
the significance of global cold-start management among all
functions. Additionally, when SMIless-Homo only considers
homogeneous resources, the applications suffer from a high
SLA violation ratio of up to 22%, as illustrated in Fig. 13(b).

D. Adaptation to Bursty Arrivals

We conduct an evaluation of SMIless in handling burst
workloads. Specifically, we sample a 60-second time window
during which the workloads exhibited wide fluctuations. As
depicted in Fig. 14(a), SMIless shows a fast response to work-
load changes, with the number of pods varying significantly in
accordance with the number of invocations. Regarding the pro-
portion of containers with different backend types, Fig. 14(b)
illustrates that when the number of invocations increases, the
ratio of CPU-to-GPU usage also goes up dramatically. This
can be attributed to the fact that GPUs are more efficient
in processing batched invocation requests in parallel, thus
requiring only a small number of GPU instances to be scaled
out in a burst workload setting.
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Fig. 14: Resource provisioning under burst workload.
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As shown in Fig. 15, SMIless demonstrates the optimal
trade-off between reducing overall costs and meeting SLA
requirements when making online scaling decisions. Specifi-
cally, during this period of bursty workloads, Auqatope, Orion,
and Icebreaker result in costs that are more than 1.41× higher.
Although GrandSLAm achieves the lowest cost due to its
restricted resource scaling capability, it consequently leads to
SLA violations, with rates as high as 20%.
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E. System Overhead

As illustrated in Fig. 16(a), the overhead of finding a
strategy using the Strategy Optimizer increases almost linearly
as the length of the longest path within a DAG increases.
Specifically, SMIless can find a near-optimal strategy within
20 ms for the longest path of a DAG with 12 functions,
which achieves a 10× ∼ 100× reduction compared with
other path searching methods. Additionally, the Auto-scaler’s
optimization process takes less than 0.1 ms to compute optimal
scaling results, as shown in Fig. 16(b). This overhead is
relatively small, highlighting the efficiency of SMIless in co-
optimizing resource configuration and cold-start management.

VIII. RELATED WORK

Serverless workflow management. Recently, there has been a
significant amount of research dedicated to resource manage-
ment for serverless platforms that employ workflows. The key

objective is to strike a balance between minimizing execution
costs and avoiding SLA violations [4], [15], [1], [65], [66],
[67], [68], [24], [69], [27], [10], [70]. However, many of
these studies that focus on managing function configurations
in serverless workflows tend to overlook the critical aspect of
cold start management. Consequently, they may be more sus-
ceptible to SLA violations or have lower cost-efficiency [65],
[69], [24], [10]. On the other hand, works that specifically
address cold start management in serverless workflows [68],
[4], [66], [1], [67], [15] often neglect the coupling between
cold-start mitigation and resource configuration.
Serverless in heterogeneous environments. Heterogeneous
resources present good opportunities to enhance the perfor-
mance of serverless applications, and several works have been
proposed to address this issue [14], [17], [10], [2], [18], [5].
However, they mainly focus on the cold start management of
individual functions, without being aware of the DAG [14],
[17], [2], [18]. While LLama [10] leverages heterogeneous
resources, it requires function instances to be always kept
alive, leading to significantly high costs.

IX. CONCLUSION

This paper pioneers a comprehensive approach to globally
co-optimize resource configuration and cold-start management
for applications with complex DAGs under a serverless com-
puting platform, utilizing heterogeneous resources. Addressing
challenges stemming from the cascading effect and highly
dynamic invocation patterns, we propose a new cold-start man-
agement policy and an efficient path search algorithm capable
of achieving near-optimal costs with minimal computation
overhead. Extensive experiments demonstrate that our design
can significantly reduce costs, without violating SLAs for E2E
latency in handling all user requests.
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