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Abstract
Deep learning (DL) inference services are widely recognized
as crucial workloads in large-scale cloud clusters. However,
due to the stringent latency requirements, cloud providers
often over-provision GPU resources, resulting in underuti-
lization of the available GPU potential. Although co-locating
tasks on the same device can enhance utilization, ensuring
Service Level Objectives (SLOs) guarantees for multiplex-
ing highly dynamic inference services becomes extremely
challenging due to significant resource interference.

In this paper, we introduceMudi, a new SLO-aware system
designed to optimize the utilization of GPU resources within
large-scale clusters. Mudi achieves this by efficiently multi-
plexing DL inference services with training tasks through
spatial sharing. The fundamental concept behind Mudi in-
volves profiling the latency of inference services using a
piece-wise linear function that accurately captures resource
interference. Leveraging this quantification of interference,
Mudi designs a scalable cluster-wide co-location policy, de-
termining the optimal multiplexing of training tasks and
inference services to maximize resource efficiency. Further-
more, Mudi incorporates adaptive batching and resource
scaling mechanisms to rapidly adapt to the dynamic work-
loads. Experimental results demonstrate that Mudi improves
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42% of GPU resource utilization and achieves up to 2.27×
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as compared to state-of-the-art multiplexing methods.
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1 Introduction
The adoption of DL applications has proven highly effective
in various domains, such as face recognition [24, 84], AI
painting [31, 69], and intelligent assistants [23, 49]. These
applications heavily rely on large DL training (DLT) models,
which are subsequently used for online inference services.
The computation for DLT models has been significantly en-
hanced by powerful GPUs, and to handle the increasing
demand for evolving DL models, inference computation has
also been migrated to GPU servers [61, 79].
Inference services are commonly performed in real-time

to meet online requests with strict latency requirements,
typically ranging from tens to hundreds of milliseconds per
request. These requirements are often defined as Service
Level Objectives (SLOs) [8, 14, 58]. However, to meet these
SLOs, cluster managers tend to allocate entire GPUs to in-
ference services, resulting in under-utilization of resources
during periods of low request arrival rates. According to
our trace analysis from Alibaba Cloud, the average resource
utilization of inference services is as low as 37%. Similarly,
training tasks, which are typically more resource-intensive
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and time-consuming, also exhibit low resource utilization
rates. In fact, in today’s production clusters, about 30% of the
GPU device duration dedicated to training tasks have a GPU
utilization1 of less than 10% [28, 33]. Despite this low utiliza-
tion, DL training tasks in production often experience long
waiting times before they can be executed [27, 28, 45, 60].

An extensively adopted approach to enhance resource
utilization in production clusters is multiplexing [40, 80].
This involves co-locating multiple workloads on the same
GPU device using either temporal sharing [19, 20, 73], or
spatial sharing techniques via NVIDIA MPS [7, 14, 46, 82], or
MIG [39, 48]. Even though multiplexing has proven effective,
it can potentially lead to significant interference caused by
various resource contention [73, 75], which can ultimately
degrade task performance.
Existing approaches for mitigating multiplexing interfer-

ence in GPU clusters mainly focus on two levels: cluster-
wide [73, 82] and per-device [14, 39]. At the cluster-wide
level, optimization entails selecting appropriate workloads
for co-location across the entire cluster to minimize overall
resource contention [29, 75, 77], leveraging techniques such
as workload characterization. On the other hand, per-device
control tends to be more fine-grained, focusing on precise
control of kernel launching [64, 72, 73, 80] or configuring the
appropriate resource partition size to separate the execution
of co-located workloads within a device [7, 39]. However,
a fundamental limitation of the state-of-the-art solutions is
that these two-level optimizations are often conducted sep-
arately [7, 74, 81], leading to suboptimal results. Typically,
device-level control needs to modify the application configu-
ration or alter the underlying hardware resource allocation,
which significantly affects task execution behavior in terms
of resource usage, and in turn, has a great impact on the effi-
ciency of cluster-wide optimization. Therefore, it is essential
to design these two-level optimizations in tandem, although
this can be a challenging task. Another significant limitation
is that existing solutions struggle to promptly adapt to highly
fluctuating online inference services or unobserved training
task arrivals [68, 82], which can potentially result in SLO
violations or reduced training throughput.

To address these challenges, this paper introduces Mudi, a
new Multiplexing system for highly dynamic DL workloads
that prioritizes SLO-awareness for inference services in GPU
clusters. By multiplexing inference services with training
tasks on the same device using spatial multiplexing, there
is an excellent opportunity for Mudi to enhance utilization.
The key observation behind Mudi is that the latency curve
of each inference service can be expressed as a piece-wise
linear function in relation to resource partition. Furthermore,
function slopes can effectively capture resource interference
caused by the co-located workload. Based on this insight,

1GPU utilization represents the percentage of time during which one or
more kernels were executing on the GPU.

Mudi enables joint optimization of cluster-wide workload
co-location with device-level control.
Mudi is built upon a global optimization framework de-

signed to maximize training performance while ensuring
compliance with inference SLOs. To tackle this optimization
challenge, Mudi employs a predictive approach to accurately
estimate the slope of the latency curve for each inference ser-
vice based on the network architecture of the training task.
With this prediction, Mudi intelligently assigns incoming
training tasks to the most suitable GPU device in the entire
cluster, taking into account various resource configurations
and inference service batching sizes to minimize interference.
At the device level, Mudi incorporates adaptive batching and
dynamic resource scaling to find the best resource partition
size and batching size for different rates of request arrival.
Mudi designs efficient optimization methods to tackle large
search space and simultaneously achieve rapid convergence.
Additionally, Mudi incorporates a GPU memory manage-
ment mechanism to ensure uninterrupted operation of the
inference service, effectively addressing potential memory
limitations for multiplexing.
As a multiplexing system, Mudi is designed to be highly

scalable and flexible. It can seamlessly integrate with various
scheduling policies, such as shortest job first, fair sharing,
and priority-based scheduling, without requiring any mod-
ifications to its core multiplexing algorithms. Additionally,
Mudi is fully compatible with MIG, treating each MIG in-
stance as a distinct, smaller GPU. This compatibility enables
the concurrent multiplexing of inference services and train-
ing tasks on a single GPU. Mudi can handle a wide variety
of DL workloads, except in scenarios where the cumulative
memory usage of model weights and intermediate results
exceeds the GPU memory capacity, such as LLM inference
with extensive key-value caches consumed by long contexts.

We have implemented a prototype of Mudi on the Ku-
bernetes platform [1] and conducted evaluations using real-
world DL workloads on a private 12-A100 GPU cluster and a
simulated 1000-GPU cluster. The experimental results vali-
date the effectiveness of Mudi, showcasing a significant im-
provement of 42% in GPU resource utilization and achieving
2.27× higher training efficiency while maintaining compli-
ance with inference SLOs, outperforming state-of-the-art
multiplexing methods. Furthermore, Mudi attains a high ac-
curacy of 85% for latency prediction, further showcasing its
robustness. In summary, our contributions are as follows:

⊲ Quantification of interference. We present a novel
quantification method that effectively captures resource in-
terference by analyzing the slopes of piece-wise linear func-
tions. This quantification is achieved through the utilization
of an efficient profiling method with low estimation error.

⊲ Joint optimization within a large search space.We
design a highly scalable optimization method that allows
for the co-optimization of two-level interference mitigation
within a large search space. This approach enables Mudi to
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Figure 1. Distribution of request arrival rates and GPU re-
source utilization of online inference services in Alibaba.

rapidly adapt to highly dynamic DL workloads, encompass-
ing both inference services and training tasks.

⊲Handling unobserved training tasks.We have devel-
oped a methodology that utilizes network architecture char-
acteristics to effectively multiplex previously unobserved
online arrivals of training tasks.

2 Background and Motivation
In this section, we present critical DL workload character-
istics from the trace analysis on large-scale GPU clusters.
These findings drive the development of more efficient spa-
tial multiplexing solutions among DL workloads.

2.1 Characteristics of DL Workloads
2.1.1 Inference services. In production clusters, infer-
ence services are commonly regarded as high-priority work-
loads due to their requirement to meet strict SLOs.
Highly fluctuating inference workloads. To illustrate the

dynamic and random characteristics of online inference re-
quests, we conducted an analysis on the distribution of QPS
(queries per second) for two typical face recognition ser-
vices deployed in Alibaba clusters. As shown in Fig. 1(a), the
QPS exhibits random fluctuations ranging from 30,000 to
60,000, with no discernible periodic patterns but occasional
inflection points over time. This fluctuation pattern holds
true across other inference services offered by Alibaba. The
highly fluctuating nature of request arrivals poses a chal-
lenge when accurately predicting resource requirements.

Underutilization of GPU resources for inference services. To
meet their inference SLOs and maintain high throughput,
service providers often over-provision GPU resources for
inference services in anticipation of potential bursty work-
loads. However, this practice can result in low utilization
even when techniques such as batching are applied. To ex-
plore this issue, we conducted an additional analysis on the
GPU utilization of all online inference services from Alibaba
Cloud, as illustrated in Fig. 1(b). This figure presents the
maximum, mean, and minimum GPU utilization, as well as
the requested GPU resources, for all services over a week.
The results indicate a tendency among inference services
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Figure 2. GPU utilization and queueing delay of DL training
tasks in large-scale GPU clusters.

to request more GPU resources than they actually utilize.
Specifically, the GPU utilization for all services remained
below 52%, with an average SM utilization of less than 37%.
These findings strongly suggest that a significant number
of allocated GPUs are underutilized, even when co-located
with other workloads on the same GPU.

2.1.2 DL training tasks. DL training is unlike online in-
ference in that it is computationally intensive and time-
consuming. Additionally, there are usually no strict SLOs
associated with DL training, which means that there is room
for temporary delays or deprioritization of training tasks
until GPU resources become available.
Underutilization and long queueing delay of DL training

tasks. We analyze traces of training tasks obtained from
large-scale GPU clusters at Alibaba (PAI) [4, 70, 71], and two
LLM clusters (Seren, Kalos) in Shanghai AI Lab [28, 38].
The results, illustrated in Fig. 2, showcase the CDF of GPU
utilization and queueing delay for training tasks across these
clusters. Our findings reveal that in PAI, Seren and Kalos,
GPU utilization remains nearly zero for approximately 30%
of the time and falls below 50% for an impressive 85% of
the time in PAI. Such wastage of GPU resources is signif-
icant. Additionally, queueing delays for DL training tasks
are frequently lengthy, with the most extended delay ex-
ceeding 1,000 minutes. The main reasons for low utilization
include GPU resource over-provisioning and resource frag-
mentation [71] on each device, as well as communication
bottlenecks among multiple training tasks. Additionally, the
extended queuing delay is a consequence of a high volume of
task requests, with users frequently requesting more GPUs
than actually needed. Based on these observations, it is ev-
ident that there is a strong desire to multiplex DL tasks in
order to enhance GPU resource utilization and minimize
queueing delay, ultimately leading to faster training.
2.2 DL Multiplexing: Opportunities and Challenges
2.2.1 Opportunities. While spatial multiplexing has been
proven to be effective for improving GPU utilization, it can
potentially create substantial interference due to resource
contention among co-located workloads such as CPU re-
source, PCI-e bandwidth, memory bandwidth, and GPU L2
cache [74], which can result in SLO violations for inference
services. Therefore, it is crucial to carefully choose compati-
ble workloads for multiplexing to minimize interference.
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Figure 3. Breakdown of average interference for GPT2 and
ResNet50 services multiplexed with other inference tasks.

Table 1. Inference services with SLOs from various domains
Field Model Dataset Param (M) SLO (ms)
♦ ResNet50 [24] ImageNet [12] 25.6 150
♦ Inception [67] ImageNet 23.8 120
★ GPT2 [54] SQuAD [55] 335 100
♥ BERT [13] SQuAD 110 330
♣ RoBERTa [42] SQuAD 125 110
♠ YOLOS [15] COCO [41] 30.7 2200

♦ Image Classification★Text Generation ♥ Language Modeling ♣ Ques-
tion Answering ♠ Object Detection.

Interference between inference services is high. Existing sys-
tems, such as gpulet [7] and Astraea [81] primarily concen-
trate on the multiplexing of various inference services on
a single GPU to enhance throughput. However, we show
that co-locating inference services together will result in
significant higher request latency. To demonstrate this, we
conduct experiments to individually multiplex two common
inference services - GPT2 for text processing and ResNet50
for image processing - with other services detailed in Tab. 1
using MPS on an A100 GPU. In order to control interfer-
ence, we adjust the batching size from

{
16, 32, 64, 128, 256

}
of GPT2 (or ResNet50) and the percentage of GPU resources
(GPU%) allocated to each inference service from 10% to 90%.
With batching, multiple inference requests are bundled to-
gether and served concurrently by the DL backend. In these
experiments, we define interference as the average value
of Tcolo/Tsolo across all requests under each configuration,
where Tcolo and Tsolo represent the latency of co-located and
standalone workloads, respectively.
As shown in Fig. 3, the end-to-end (E2E) interference ex-

perienced by GPT2/ResNet50 can be significant, depending
on the co-located task, with average values of 3.19× and
2.40×, respectively. To examine the underlying causes, we
analyze the interference introduced across all three phases:
data preprocessing/tokenization, data transmission between
the host and GPU memory via the PCI-e channel, and in-
ference execution. We discovered that in standalone mode,
each phase of GPT2/ResNet50 account for 4%/7%, 10%/71%,
and 86%/22% of the total time, respectively, across different
batching sizes and GPU% configurations. However, when
GPT2 (or ResNet50) was multiplexed with other inference
services, its tokenization (or preprocessing) phase experi-
enced 3.07× (or 4.93×) interference. This can be attributed
to the tokenization and image preprocessing phases being
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Figure 4. Breakdown of average interference for GPT2 and
ResNet50 multiplexed with various training tasks.

multi-threaded and parallel, requiring substantial CPU re-
sources for execution, leading to CPU contention. Moreover,
the inference phase of GPT2 is also heavily impacted by the
co-located service due to the contention on CPU process.
This is primarily caused by the control flow involved during
inference, which can often account for up to 72% of the total
execution time in the inference stage [78]. As depicted in
Fig. 3(b), the inference phase of ResNet50 is also adversely
affected, experiencing a 2.5× increase in interference under
multiplexing. While the control flow in ResNet50 does not
constitute as large a proportion as it does in sequentially
generated models, it still suffers from CPU contention.
Interference between inference and training tasks is mod-

erate. We conduct another similar experiment in which
GPT2/ResNet50 was multiplexed with various training tasks,
as detailed in Tab. 3. The results, depicted in Fig. 4, reveal
that the E2E interference is significantly reduced when the
co-located workloads are training, with average values of
1.67×/1.21×. The key reason behind is that the training tasks
require longer time to train using a single thread on CPU [83],
which diminishes CPU contention. It shows lower CPU and
memory utilization when co-locating inference with training,
at 21.26% and 11.07% respectively, compared to co-locating
inference services together, which exhibited 44.58% CPU and
15.70% memory utilization. Consequently, the tokenization
phase for GPT2 (data preprocessing phase for ResNet50) is
reduced to 2.49× (1.15×). Similarly, the interference during
the inference stage is also significantly reduced, going from
3.92× to 1.4× for GPT2, and from 2.5× to 1.23× for ResNet50.
Due to the less contention on the CPU side, the GPU re-
source utilization is improved when co-locating inference
with training. Specifically, the SM utilization rate was higher
at 88.87% when co-locating inference with training, versus
65.93% in the co-located inference services scenario. Further-
more, the frequency of data transfers required by training
is less than that of inference. This results in reduced data
transfer interference when co-locating inference of image
tasks with training, with a factor of 1.16×. In contrast, the
data transfer interference is higher at 1.9× when co-locating
inference of image tasks with other inference services.

Takeaway. The interference between inference and train-
ing is relatively mild due to lower contention on CPU re-
sources and PCI-e bandwidth, offering a beneficial opportu-
nity to enhance GPU utilization while meeting the SLOs of
inference and improving training throughput.
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2.2.2 Challenges. Multiplexing inference services with
training tasks can provide benefits, however, there are several
challenges involved in achieving global optimization for the
entire cluster in practical scenarios.

𝑪1: Dynamic workload arrivals. The first challenge is
due to the highly dynamic nature in both inference and train-
ing tasks. As illustrated in Fig. 1(a), the arrival rates of re-
quests for inference services exhibit significant fluctuations.
Therefore, to effectively mitigate interference, a real-time
per-device control mechanism is essential to adapt to these
varying arrivals. However, this poses a significant challenge
as the mechanism must be able to anticipate outcomes in
advance to ensure compliance with SLOs. Moreover, unlike
long-running inference tasks that can be thoroughly pro-
filed in advance, training tasks fall into the category of batch
processing jobs, which encompass various types due to the
inclusion of fine-tuningworkloads [16, 26, 53]. Consequently,
the per-device control mechanism needs to frequently handle
previously unseen training jobs.

𝑪2: Intricate coupling between cluster-wide task co-
location and device-level configurations. The second
challenge arises from the complex interdependence between
task co-location, batching configuration [7, 8], and resource
scaling. As shown in Fig. 4, the co-location pattern has a
heavy impact on the interference introduced to inference
services, making it crucial to fine-tune device-level configu-
rations such as resource partitioning and batching sizes to
maintain SLOs. However, changes to task configurations can
also impact task execution behaviors, which can have a sig-
nificant impact on the efficiency of optimizing cluster-wide
co-location. The situation becomes even more complicated
when optimizing training throughput simultaneously.

𝑪3: Large optimization space. The third challenge
stems from the vast number of potential combinations of
batching sizes and resource partition sizes. The batching size
for each inference can range from 2 to one thousand depend-
ing on the GPUmemory limit. Additionally, the partition size
can vary from 1% to 100%. Consequently, the search space for
finding optimal multiplexing solution exceeds 1000N × 100N,
where N is the number of inference services.
3 Mudi Overview
In order to tackle the challenges outlined in § 2.2.2, we pro-
pose Mudi, a new and efficient system for multiplexing infer-
ence services and training tasks using MPS within a cluster.
Mudi aims to achieve the following primary goals: 1) En-
sure the SLOs for inference services are met under dynamic
workloads. 2) Maximize the throughput for DL training tasks.
3.1 Key Ideas
𝑰1: Explicit modeling of inference latency. Mudi relies
on explicit quantification of latency for inference services
concerning resource partitioning, batching size, and resource
interference. This quantification facilitates the implementa-
tion of real-time dynamic batching and resource scaling, as it
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Figure 5. Latency of GPT2 with various batching sizes under
solo-run and colocation with training tasks using batching
size=256 on an A100 GPU.

allows for convenient justification of whether the SLOs of on-
line services are being maintained, thus addressing challenge
𝑪1. Simultaneously, it enables the seamless coordination of
workload co-location at a cluster-wide level and interference
control at the device level, all within a single optimization
framework, effectively addressing challenge 𝑪2.

The key observation supporting this quantification is that
the inference latency follows a piece-wise linear function in
relation to resource partitioning, as illustrated in Fig. 5(a).
There exists a cutoff point where latency only marginally
decreases when resource allocation exceeds this threshold
and the exact cutoff points vary depending on the batching
sizes utilized. Furthermore, this piece-wise linear relation-
ship persists even when inference is multiplexed with other
training tasks, as shown in Fig. 5(b).
𝑰2: Predicting interference using underlying network
architectures. The slope of the piece-wise linear function
of the interference latency effectively captures the inter-
ference introduced by the co-located training task. Mudi
leverages the network architecture of the DL training task
to estimate this slope in advance based on offline profiles, al-
lowing it to easily adapt to previously unobserved workloads
and effectively address challenge 𝑪1. Moreover, this predic-
tion empowers Mudi to easily identify the smallest resource
allocation that ensures SLOs for inference services under
each selection of batching size. Consequently, it reduces the
search space effectively, addressing challenge 𝑪3.

3.2 System Architecture
We have developed three key components in Mudi, as shown
in Fig. 6. TheOffline Profiler is responsible for profiling the
latency and interference of inference services in multiplex-
ing mode. The Online Multiplexer receives DL training
tasks from end-users and finds an optimal device to assign
the training task that introduces minimal interference to
the inference service. Meanwhile, the Local Coordinator
exposes the device stats and controls the configurations.
The Offline Profiler operates offline to profile samples

for estimating interference caused by different workload
co-locations. It comprises two modules. First, the Latency
Profiler❶ profiles the latency of each inference service when
multiplexed with training tasks under various batching sizes
and GPU%. Second, the Interference Modeler❷ models the
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degradation in service latency caused by interference based
on network architectures from training tasks.
The Online Multiplexer, functioning as a centralized

component across the entire cluster, comprises two mod-
ules: the Interference Predictor❸ and the Device Selector❹.
The Interference Predictor utilizes latency curves obtained
from the Offline Profiler, along with extracted network ar-
chitectures, to forecast the interference caused by incoming
training tasks. TheDevice Selector is responsible for assigning
training tasks to GPUs, selecting the device that introduces
minimal interference for all potential co-location patterns.

The Local Coordinator is deployed on each GPU device
and consists of four primary modules. The Monitor❺ contin-
uously monitors the QPS of each inference service. When
the change in QPS exceeds a certain threshold, it triggers
the tuning process to adjust batching size and GPU% to en-
sure the SLOs. The Tuner❻ adopts efficient optimization
methods to determine the optimal batching and GPU% for
each co-located workload based on performance profiles
obtained from the Online Multiplexer. The Agent❼ is in-
tegrated into both the inference (Service Agent) and training
(Training Agent) processes. The Service Agent controls the
batching size and GPU% for the corresponding inference ser-
vice, and Training Agent controls the GPU% that is allocated
to its training task. These processes are automated and allow
the system to adapt to the dynamic QPS of inference. The
Memory Manager❽ can swap the memory of training tasks
between device and host to prevent out-of-memory errors
of co-located inference service.

4 Inference Latency Quantification
In this section, we present the design details of Mudi’s quan-
tification approach for inference latency.

4.1 Offline Profiling
4.1.1 Inference latency profiling. As highlighted in
§ 3.1, the inference latency can be characterized as a piece-
wise linear function in relation to the resource partition size
(denoted as GPU%). And the co-located training task has a

Table 2. Fitting error of three representative models

Model Samples 5 6 7 8 9
Polynomial fitting 9.81 8.31 7.25 6.71 5.53

MLP fitting 7.32 7.36 7.24 7.15 6.99
Piece-wise linear 10.03 6.41 4.27 3.91 3.78

heavy impact on the slope of the latency curve across dif-
ferent batching sizes. Hence, the Latency Profiler opts to
profile the relationship between the latency of each infer-
ence service and GPU% value under a fixed batching size
and co-located training task.
Specifically, the Latency Profiler gathers the P99 tail la-

tency data for each inference service 𝑖 across a range of
GPU% values from 10% to 90%, with increments of 10%. The
batching size is selected from

{
16, 32, 64, 128, 256, 512

}
, and

the co-located training task is chosen from the first five types
listed in Tab. 3. Let 𝐿𝑖

𝑏,Ψ
denote the latency under a specific

GPU% value, denoted by △𝑖 , given batching size 𝑏 and co-
location workload Ψ. The Latency Profiler fits all collected
samples

{(
△𝑖 , 𝐿

𝑖
𝑏,Ψ

)}
𝑖
into a piece-wise function:

𝐿𝑖
𝑏,Ψ =

{
𝑘𝑖Ψ,1 · (△𝑖 − △0) + 𝑙0, △𝑖 ≤ △0,

𝑘𝑖Ψ,2 · (△𝑖 − △0) + 𝑙0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(1)

Here, 𝑘Ψ,1, 𝑘Ψ,2 symbolize the slopes of the piece-wise linear
curve, while (△0, 𝑙0) represents the cutoff point. To determine
the cutoff point, the Latency Profiler calculates the curvature
of each set of three consecutive points and identifies the
middle point in the set that yields the lowest curvature [59].
Using this point as a basis, Mudi employs the small-least-
squares method to fit the slopes 𝑘Ψ,1, 𝑘Ψ,2.
While more complex models like polynomial fitting or

neural network models have the potential to enhance pro-
filing accuracy, they require a substantially larger sample
size to achieve accuracy comparable to that of piece-wise
linear fitting. As shown in Tab. 2, the piece-wise linear model
consistently outperforms the other models when using fewer
than 10 training samples. Although enlarging the training set
can improve fitting accuracy, it also significantly increases
the profiling overhead in the interference modeling stage
(§ 4.1.2), which requires estimating the parameters of fitting
models across various batching sizes and co-located train-
ing tasks. Additionally, we observed a significant decrease
in testing error for the piece-wise model when the number
of training samples increases from 5 to 6. Therefore, to bal-
ance profiling overhead and fitting accuracy, we opt for the
piece-wise model with 6 training samples. Moreover, we also
evaluated the E2E performance of the multiplexing approach
based on polynomial fitting. The results indicate that the re-
sulting average inference latency/training time is 6.3%/15.8%
higher than those using piece-wise models.

4.1.2 Interference modeling. With the fitted functions
from the Latency Profiler, the Interference Modeler constructs
a learning model to measure interference.
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Figure 7. The network layers of representative training tasks
that Mudi identifies, where Extraction Layer, Fire, and others,
are classified into other_layers.

To train the learner, the Interference Modeler utilizes the
network architecture of the co-located training task and
the batching size 𝑏 of inference 𝑖 as input features, denoted
as X = [Ψ, 𝑏]. Regarding the network architecture Ψ, the
Interference Modeler primarily focuses on the number of spe-
cific layers such as [conv, linear, activations, embeddings,
encoder, decoder, flatten, batch_normalization, fc, pooling,
other_layers], as depicted in Fig. 7. These layers are com-
monly found in various DL models and significantly impact
the GPU cycles and memory resources during parameter up-
dates in training, thereby affecting inference latency. Hence,
the Interference Modeler extracts these network layers for
each training task involved in the offline profiling process.
Mudi selectively excludes unpopular layers to reduce the
need for a large number of samples for accurate predictions
and to prevent overfitting to unobserved training tasks.

The output from the learner includes the slopes 𝑘𝑖Ψ,1, 𝑘
𝑖
Ψ,2,

as well as the cutoff point (△0, 𝑙0), which can be denoted as
Y = [𝑘𝑖Ψ,1, 𝑘𝑖Ψ,2, △0, 𝑙0]. To establish the relationship between
X and Y, the Interference Modeler collects all Y values from
the Latency Profiler and utilizes lightweight models such as
random forest (RF), support vector regression (SVR), etc.,
for each inference service 𝑖 . Additionally, the Interference
Modeler determines the optimal model as the learner for
each metric in Y individually. Furthermore, the prediction
model is adaptable and can be incrementally updated to
accommodate new workloads that arrive at the cluster.

4.2 Online Prediction
When a new training task 𝑗 arrives, the Training Agent of
Mudi starts by extracting its network architecture to eval-
uate the interference that may be introduced to potential
co-located inference services. For models with static compu-
tation graphs, such as ONNX/TensorFlow, Training Agent di-
rectly extracts their network layers from the model files. For
dynamic computation graphmodel like Pytorch,Mudi selects
a GPU device with the lowest GPU utilization throughout
the cluster and runs the training task on it for a mini-batch
to trace the invoked modules. This allows the Training Agent
to collect the quantities of each identified network layer.
With the input features X, the Interference Predictor em-

ploys the corresponding learning model to predict the slopes

and cutoff point for the associated piece-wise linear func-
tion. As a result, the Online Multiplexer is capable of fore-
casting the latency of an inference service 𝑖 under each
GPU% value △𝑖 , with a batching size 𝑏𝑖 , while being co-
located with a training task 𝑗 comprising network architec-
tures Ψ𝑗 . In simpler terms, the Online Multiplexer obtains
𝐿𝑖
𝑏,Ψ

= P𝑖 (𝑏𝑖 , △𝑖 ,Ψ𝑗 ). These latency predictions are then uti-
lized by the Device Selector to make multiplexing decisions.

5 Online Multiplexing Approach
In this section, we present Mudi’s multiplexing optimiza-
tions. To provide a comprehensive understanding of the key
designs, we begin by introducing the global optimization
framework that underlies Mudi.

5.1 Optimization Model
Considering there are N inferences services across the entire
cluster, it is feasible for an inference service to be co-located
with multiple training tasks on a single GPU device that has
limited GPU memory capacity. Once a new training task 𝑗

arrives at the cluster, Mudi assigns it to a specific device
and configures an appropriate batching size and resource
partition for the co-located inference service 𝑖 based on the
inference QPS W𝑖 . The primary objective is to guarantee
the SLO for inference while simultaneously maximizing the
training throughput, effectively minimizing the training time.
This leads to the following optimization problem:

min{
𝑥𝑖𝑗 , 𝑏𝑖 , △𝑖

} ∑
𝑗 ∈A(𝑡 )

N∑
𝑖=1

𝑥𝑖𝑗 · Iteration𝑗 (𝑏𝑖 , △𝑖 )

s.t.,
W𝑖

𝑏𝑖
· P𝑖 (𝑏𝑖 , △𝑖 ,Ψ𝑗 ) ≤ SLO𝑖 , ∀1 ≤ 𝑖 ≤ N,

△𝑖 ≤ 1, ∀1 ≤ 𝑖 ≤ N,
N∑
𝑖=1

𝑥𝑖𝑗 = 1, and 𝑥𝑖𝑗 ∈
{
0, 1

}
.

(2)

In the formulation, A(𝑡) denotes the set of training tasks to
be executed, and 𝑥𝑖𝑗 is a binary optimization variable that in-
dicates whether training task 𝑗 is multiplexed with inference
service 𝑖 . Iteration𝑗 (𝑏𝑖 , △𝑖 ) captures the mini-batch training
time for task 𝑗 , which is influenced by the batching size and
resource partition of the inference service due to resource
interference. The first constraint ensures that the latency of
all requests from each service adheres to the SLO. The sec-
ond constraint specifies that an inference service is limited
to utilizing a maximum of 100% of the GPU resources.
In general, finding the optimal solution to this problem

is intractable. The difficulty arises from two major aspects.
First, accurately quantifying the training throughput in the
presence of resource interference is a complex task, render-
ing existing optimization solvers unsuitable for the problem.
Moreover, even if offline profiling is employed for estimating
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the throughput in advance, it fails to accommodate unob-
served workloads. Second, the expansive optimization spaces
render it impractical to exhaustively enumerate all potential
co-locations and per-device configurations in order to deter-
mine the optimal solution. This lack of scalability arises from
the substantial overhead required to collect mini-batch train-
ing time when considering every possible combination. To
address these issues, Mudi employs an efficient approxima-
tion solution that initially involves identifying the ideal in-
ference service to be multiplexed with an incoming training
task based solely on interference estimation. Subsequently,
Mudi performs local optimization on each device.

5.2 Cluster-wide Workload Co-location
Upon receiving the latency curve 𝐿𝑖

𝑏,Ψ
= P𝑖 (𝑏𝑖 , △𝑖 ,Ψ𝑗 ) from

the Online Predictor, the Device Selector proceeds to quan-
tify the average value of the slopes derived from the curve.
This metric not only measures the extent of performance
interference that the training task may impose on the in-
ference 𝑖 , but also provides an evaluation of the potential
advantages of multiplexing the new training task with 𝑖 . On
one hand, a smaller slope indicates a reduced level of inter-
ference, thereby enhancing the ability to meet the SLO for
the inference service 𝑖 . On the other hand, a smaller slope
implies that the inference service is less sensitive to varia-
tions in resource partition size. This characteristic enables
a higher allocation of GPU resources to the training task,
which is advantageous for optimizing the objective in (2).

Subsequently, the Device Selector assigns an incom-
ing training task to the device that yields the smallest
average slope across all batching sizes within the set{
16, 32, 64, 128, 256, 512

}
. This assignment strategy effec-

tively resolves the optimization variable 𝑥𝑖𝑗 in (2), allowing
for a quick response to previously unseen workloads. Note
that for each inference service, changes in co-location oc-
cur infrequently, as a new co-location decision is made for
pending training tasks only after an existing training task
has been completed.

5.3 Device-level Multiplexing
When a training task is assigned to the selected GPU device
or the change in the QPS of an inference service 𝑖 exceeds the
threshold, the Tuner takes on the responsibility of finding
the optimal configuration (𝑏𝑖 , △𝑖 ) for co-located workloads.
The goal is to minimize Iteration𝑗 (𝑏𝑖 , △𝑖 ) of the training task
while adhering to the SLO constraint for inference 𝑖 .

Tuning both the batching size and GPU% simultaneously
may not be necessary and can be costly for several reasons.
First, based on our observations of DL workload characteris-
tics during GPU% and batching size tuning, we found that
batching size has a stronger impact on running efficiency.
Adjusting the batching size alone following the explicit quan-
tification of inference latency may be sufficient to meet SLOs

most of the time. Second, due to the limitations of MPS,
one needs to terminate and restart the process to update
the corresponding GPU% environment variable, which adds
complexity and overhead. Therefore, the Tuner employs a
two-phase approach for decoupling: adaptive batching and
dynamic resource scaling. This approach enables Mudi to
effectively reduce the optimization space and accommodate
the uncertainties inherent in a cluster environment.

5.3.1 Adaptive batching. The Tuner leverages Bayesian
Optimization (BO) [17] to find the optimal batching size
configuration for each inference service. BO is a blackbox
optimization method that does not require the exact expres-
sion of the objective function Iteration𝑗 (𝑏𝑖 , △𝑖 ). Instead, it
uses an iterative approach to guide its exploration process.

It is important to note that the relationship between batch-
ing size of inference service and training throughput is not
strictly monotonic. This is due to the varying ratio between
data transfer time and computation time during inference,
which is highly dependent on the characteristics of the infer-
ence service and the specific batch being processed. In other
words, a larger batching size does not necessarily result in
higher interference to a training task. This uncertainty can
be effectively addressed through the utilization of BO. An-
other significant advantage of BO is its ability to capture
interactions and relationships between configurations and
objective functions based solely on real-time feedback.
To make BO more efficient, The Tuner selects Gaussian

Process (GP) [56] as the surrogate model for approximat-
ing the objective function min Iteration𝑗 (𝑏𝑖 , △𝑖 ), in order to
reduce the search cost. In each round of BO, the surrogate
model is updated using online sampled mini-batch itera-
tion times obtained from previously adopted configurations
(𝑏𝑖 , △𝑖 ), provided by the Training Agent. Furthermore, the
Tuner devises an efficient acquisition function based on the
lower confidence bound (LCB [36, 63]) to guide the explo-
ration process effectively:

min
𝑏𝑖 ∈R

A(𝑏𝑖 ) = 𝜇 (𝑏𝑖 , △𝑖 ) − 𝛽
1/2
𝑛

√
𝜎 (𝑏𝑖 , △𝑖 ). (3)

Here, R denotes the search space that contains all candidate
batching sizes, 𝜇 (·) and 𝜎 (·) represent the estimated mean
and variance by the GP, respectively. 𝛽𝑛 is incorporated to
balance the exploration and exploitation of BO, and𝑛 is the it-
eration time. In the Tuner module, we set 𝛽𝑛 = 2 log( |R|/𝑛2),
which facilitates faster convergence.

During the exploration process, it is essential for the Tuner
to ensure that the candidate configuration does not violate
the SLO, as specified by the first constraint in (2). To address
this, the Tuner incorporates the constraint into the GP frame-
work, continuously updating the surrogate model until con-
vergence is achieved for A(𝑏𝑖 ). The evaluation conducted
in § 7.5 demonstrates that GP-LCB effectively identifies the
optimal configuration within 25 iterations. Notably, updating
the batching size merely necessitates passing the new 𝑏𝑖 as a
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parameter to the inference service. This allows for on-the-fly
updates without restarting the service.

5.3.2 Dynamic resource scaling. The Tuner module dy-
namically adjusts the GPU resource partitions of the infer-
ence service in two cases: 1) when a new training task is
multiplexed with an inference service, and 2) when theMon-
itor detects that a change in the QPS of the inference service.

In case a new training task 𝑗 is assigned to co-locate with
inference service 𝑖 , the Tuner initializes a GPU% value for
𝑖 to be the maximum value among all cutoff points under
different batching sizes. Subsequently, adaptive batching is
performed to determine the optimal batching size for infer-
ence based on this initial resource partition. However, since
the initial GPU% value may be excessive for service 𝑖 , the
Tuner adjusts the resource allocation to improve training
efficiency. Specifically, the Tuner determines the minimum
GPU% that maintains the SLO of service 𝑖:

△𝑖 = argmin△, s.t., W𝑖/𝑏𝑖 · P𝑖 (𝑏𝑖 , △,Ψ𝑗 ) ≤ SLO𝑖 . (4)
To address the optimization problem (4), the Tuner leverages
the CVXPY library and utilizes the ECOS solver. To accommo-
date prediction errors, the Tuner sets the actual GPU% value
to be 10% larger than the solution obtained from the solver.
In the event that the Monitor detects a QPS change rate

surpassing 50%, the Tuner will modify the GPU resource par-
tition size to ensure compliance with the SLO. To accomplish
this, the Tuner solves (4) to determine the optimal GPU% con-
figurations for the co-located workloads. Following that, the
Tuner initiates adaptive batching to find the optimal batch-
ing size that maximizes the training efficiency. However,
updating the GPU% value requires terminating the previous
inference service and restarting a new one with the updated
GPU% configuration, which results in a tens-of-second time
overhead. To hide the reconfiguration overhead, the Tuner
prepares a shadow instance with the new configuration, run-
ning as a separate process tailored to the current QPS. Once
this shadow instance is ready to handle requests, it takes
over as the active inference service, and the old service is
subsequently terminated. In rare circumstances, even with
adaptive tuning and resource scaling, it is not feasible to meet
the SLO given the current bursty QPS. In such cases, Mudi
avoids using multiplexing and instead preemptively pauses
the training task until suitable resources become available.

5.4 Analysis of Mudi’s Optimality
Mudi’s methodology hinges on assessing the average per-
formance across various batching sizes using the piece-wise
linear function to enable cluster-wide co-location. As a re-
sult, a deviation emerges between Mudi’s approach and the
optimal solution concerning co-location decisions. The opti-
mal solution is characterized as the one that minimizes the
iteration time of the training task while meeting the SLO
of the multiplexed inference service. The effectiveness rate
of Mudi’s co-location policy is represented as P, denoting

the probability that Mudi successively identifies the optimal
co-location. Hence, for all training tasks𝑀 , the anticipated
performance of Mudi’s policy is constrained by the worst-
case scenario, formulated as follows

E ≤ 1
𝑀

∑𝑀

𝑗=1

(
P · Iteration∗𝑗 + (1 − P) · Iteration†

𝑗

)
, (5)

where Iteration∗𝑗 and Iteration†
𝑗
denote the iteration times

training task 𝑗 under the optimal and worst cases, respec-
tively. We evaluated the effectiveness of Mudi’s co-location
policy within a physical cluster, as elaborated in § 7.1. The
findings reveal that Mudi attains an effective rate of 92.67%
in identifying the optimal co-location. Subsequently, through
an exhaustive approach, we determined the iteration times
and SLO violations for the best and worst configurations
(co-location, batch size, and GPU%). The outcomes show that
E stands at 1.10 for iteration time and 1.08 for SLO violation,
with the optimal values as the reference point. This implies
that the difference between Mudi’s policy and the optimal
solution is limited to a maximum of 10%.

5.5 Extension to Multiplexing More Tasks
Mudi can be seamlessly extended to support more training
tasks on a single GPU. However, as analyzed in [6], the mar-
ginal benefit of multiplexing training tasks typically begins
to diminish beyond three tasks. Moreover, it is crucial to
ensure SLO compliance for inference, which is considered
a high-priority workload. Therefore, to maintain inference
performance and maximize training efficiency, Mudi enables
the multiplexing of one inference service and no more than
three training tasks on the same GPU. To facilitate this, the
Latency Profiler enhances its sampling for each inference
service by co-locating two or three training tasks. Mudi
subsequently employs these expanded samples to establish
piecewise-linear fittings. During online prediction, the Inter-
ference Modeler designates the cumulative feature layers as
Ψ for all training tasks co-located with inference 𝑖 . During
the resource scaling phase, the Tuner first determines the op-
timal resource partition size for inference 𝑖 , and then evenly
distributes the unassigned portion of GPU resources among
all associated co-located training tasks.

5.6 GPU Memory Management
In order to prevent out-of-memory errors caused by training
large models or a sudden surge in load for inference services
on devices with limited GPU memory [35, 73], Mudi inte-
grates a memory management mechanism. This mechanism
dynamically swaps the memory of training tasks between
the device and host, ensuring that the SLO requirements for
inference are consistently met.
The management mechanism maintains a unified mem-

ory pool that is shared between the host and device, with a
single pointer used to manage memory swapping by CUDA
driver API. Mudi prioritizes inference memory pointer ad-
dress on the device and that of the training tasks on the



EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Wenyan Chen, Chengzhi Lu, Huanle Xu, Kejiang Ye, and Chengzhong Xu.

host. When there is insufficient memory, Mudi swaps the
memory of training from the device to the host. To accom-
plish this, Mudi utilizes a middleware between DL workloads
and CUDA dynamic-link libraries. Notably, this approach
differs from current solutions that require modifications of
DL frameworks [73], making it more flexible to use.

6 Implementation Details
We have implemented Mudi on Kubernetes v1.23.2 [1], using
over 4,000 lines of Go code and 1,400 lines of Python code.
All DL workloads are executed within Docker containers.

Online Multiplexer. By leveraging the Kubernetes
scheduling framework [2], we implement two policies,
namely the Interference Predictor and the Device Selector,
as score plugins. The scheduler listens for task submission
events from the Kubernetes API server and maintains a
queue to cache submitted workloads that will be scheduled
on a FCFS (first-come-first-served) basis. We also develop
a GPUShare-Device-Plugin to expose the device stats in-
cluding the GPU resource utilization to the Device Selector.
Local Coordinator. We utilize DaemonSet to implement

the Local Coordinator, which ensures that all eligible nodes
run a copy of a Pod. For a worker with multiple devices,
our Local Coordinator creates a Go coroutine for each de-
vice and triggers the tuning of GPU%

/
batching processes

for co-located workloads. The Tuner is implemented as a
DaemonSet service using Python. Additionally, the updated
configurations and other intermediate results are stored us-
ing ETCD, a highly available distributed database. When a
configuration key/value pair is updated, the controller pro-
cess in the Agent belonging to each inference service or
training task perceives the new configuration and updates
accordingly in a timely manner. The Training Agent also
records the mini-batch training time for the associated task.

Monitor.We deploy the Monitor as a long-running pro-
cess using a Go coroutine on each device. The Monitor pe-
riodically collects the QPS of each online inference service,
and for each batch of requests, it tracks the corresponding
latency and stores this information in ETCD. In cases where
the Monitor detects that the SLO is at risk of being violated,
it triggers adaptive batching or resource scaling accordingly.

MemoryManager. To implement the memory swapping
scheme, we utilize the cudaMallocManaged API from CUDA
Unified Memory [47]. This middleware intercepts CUDA
memory APIs like cuMemAlloc and substitutes them with
unifiedmemory allocation calls,cuMemAllocManaged. We de-
ploy this middleware on each server. Crucially, this memory
restructuring is entirely transparent to users, eliminating
any need for them to modify their application code.

7 System Evaluation
In this section, we present a comprehensive evaluation of
Mudi on both a physical cluster and a simulated cluster using
representative DL workloads, as shown in Tab. 1 and Tab. 3.

Table 3. DL training tasks from various domains
Field Task Name Dataset Optimizer batchsize Size Frac.
♦ VGG16 [62] CIFAR10 [37] Adam 512 S 14%
♦ SqueezeNet [32] CIFAR10 Adam 512 S 14%
♦ ResNet50 [24] CIFAR100 [37] Adam 1024 S 14%
▷ NCF [25] MovieLens [22] SGD 1024 M 12%
♣ LSTM [51] Wikitext-2 [44] Adadelta 256 M 12%
□ AD-GCL [66] Reddit[3] Adam 64 M 12%
♣ Bert [13] SQuAD [55] AdamW 32 L 12%
♠ YOLOv5 [34] COCO [41] SGD 64 L 10%
♦ ResNet18 [24] ImageNet [12] SGD 128 XL 2%

♦ Image Classification ▷ Recommendation System □ Social Network ♥
Language Modeling ♠ Object Detection ♣ Question Answering.

7.1 Experimental Setup
Physical cluster. We conducted experiments in a private
3-node cluster, each node is equipped with 4 NVIDIA A100
GPUs featuring 40GB memory, and 2 Intel Xeon Gold 6230R
CPUs. The CUDA version is 12.0 and NVIDIA driver version
is 525.15.06. All DL workloads are developed using Pytorch
1.9.0 and Tensorflow 2.5.0.
Simulated cluster.We simulated a large-scale cluster con-
sisting of 1000 GPUs to assess the scalability of Mudi. To
mimic multiplexing behavior, we fitted functions that de-
lineate the interplay between latency/minibatch time with
various batching sizes and GPU% for each colocation of infer-
ence services and training tasks, utilizing profiles obtained
from the physical cluster. Specifically, we used 270 samples
to build the fitting functions for each inference service and
training task. These functions are then used to generate per-
formance feedback at runtime in a simulated environment.
DL workloads. We chose six inference services outlined in
Tab. 1 and nine training tasks listed in Tab. 3 within vari-
ous domains. For each inference service, we simulated the
arrival of requests using a Poisson random distribution with
an average inter-arrival time of 5ms. The training task ar-
rival process follows Microsoft production traces [45] in the
physical cluster, while it is scaled by a factor of 80 in the simu-
lated cluster. We categorized each training task into different
scales according to their running time: Small (<1 GPU-hour),
Medium (1∼10 GPU-hours), Large (10∼100 GPU-hours) and
XLarge (>100 GPU-hours).
Baselines. We compared Mudi with three baselines:
GSLICE [14], the core concept of GSLICE involves allocat-
ing GPU partitions based on feedback regarding inference
latency and throughput; gpulets [7], it proposes a novel GPU
virtualization unit that enables dynamic resource allocation
for inference services; MuxFlow [82], it implements dynamic
SM allocations and matching-based scheduling techniques to
enhance the efficiency of offline training tasks. Since GSLICE
and gpulets only address inference services, we have incor-
porated a tuning mechanism for training in these baselines
to ensure a fair comparison. This tuning mechanism is simi-
lar to the one used for inference in GSLICE and gpulets. In
Mudi and MuxFlow, the profiling is constrained to include
only the first five types of training tasks.
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Figure 8. SLO violation rates of all inference services, x-s
refers to a system in a simulated cluster.
7.2 End-to-End Performance
We demonstrate Mudi’s effectiveness through executing 300
training tasks (small-scale) in a physical cluster and 5,000
training tasks (large-scale) in a simulated cluster.
Inference latency. Our analysis (as illustrated in Fig. 8)

reveals that Mudi yields the lowest SLO violation rates in
terms of P99 tail latency for each inference service among
these four systems in both physical and simulated clusters.
Here, the SLO violation rate is defined as the percentage of
times the tail latency exceeds the SLO. Mudi achieves SLO
violation rates as low as 0.5% (1.2%) on average in physical
(simulated) cluster. On the whole, Mudi achieves a reduction
of up to 5.5×, 2.2×, 4.2×, 2.3×, 3.8×, and 6× for ResNet50,
Inception, GPT2, BERT, RoBERTa, and YOLOS, respectively.
On the other hand, MuxFlow experiences the highest SLO vi-
olations due to its reliance on pre-profiled training tasks, ren-
dering it less adaptable to unseen workloads. Consequently,
this leads to high interference on each inference service, re-
sulting in a noticeable increase in SLO violation rate. GSLICE
and gpulets demonstrate higher SLO violations in inference
than Mudi, mainly because they do not consider cluster-
wide co-location interference. Conversely, Mudi utilizes the
network architectures of training tasks to estimate inter-
ference in advance. These design mechanisms enable Mudi
to effectively mitigate cluster-wide interference for infer-
ence services with unobserved training tasks. Moreover, to
maintain this low SLO violation rate, Mudi efficiently han-
dles memory by swapping memory between the device and
host for training tasks. This practice ensures that the SLO
requirements for inference are consistently met, especially
during unexpected spikes in request loads. We observed that
memory swapping occurred, on average, once every 23.08
minutes for VGG16, 37.5 minutes for SqueezeNet, 19.20 min-
utes for ResNet50, 33.33 minutes for NCF, 27.30 minutes for
LSTM, 28.57 minutes for AD-GCL, 23.08 minutes for BERT,
19.35 minutes for YOLOv5, and 17.14 minutes for ResNet18.

Training efficiency. To assess the effectiveness of Mudi
in improving training efficiency, we utilize three metrics:CT ,
WaitingT , and makespan. CT represents the task comple-
tion time. WaitingT quantifies the duration that a task has
spent waiting before being executed. And makespan refers
to the total time taken to complete all training tasks.
Fig. 9 illustrates that Mudi reduces the overall CT by up

to 2.27×, 1.49×, and 1.48×, respectively, in comparison to
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Figure 9. Normalized CT, waiting time, and makespan com-
parison for training tasks.
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Figure 10. Average resource utilization in physical cluster.

GSLICE, gpulets, and MuxFlow in large-scale clusters. Fur-
thermore, Mudi demonstrates the ability to reduce waiting
time and makespan by up to 1.63× and 2.25×, respectively,
compared to the baselines. This is attributed to the fact that
GSLICE and gpulets primarily focus on inference services
without considering optimizing training efficiency through
spatial multiplexing, resulting in lower training throughput.
Mudi holds an advantage over MuxFlow due to its adaptive
per-device control approaches. These strategies effectively
enhance training throughput, resulting in faster completion
and reduced waiting times. Additionally, the results depicted
in Fig. 8(a) and Fig. 9(a) indicate that the simulator can effec-
tively reproduce behavior that closely resembles that of the
physical cluster, with minor discrepancies of less than 4.7%
in both SLO violations and CT.

GPU utilization. As depicted in Fig. 10, Mudi exhibits
significantly higher utilization of SM and memory compared
to the baselines, particularly during the latter half of the
timeframe due to the increased prediction accuracy. Over
the long run, Mudi achieves up to 60% utilization of SM and
35% utilization of memory across all GPU devices, which is
42% higher and 19% higher than baselines, respectively. This
enhancement can be attributed to the effective co-design
of cluster-wide and device-level multiplexing. Specifically,
our observations reveal that cluster-wide optimization con-
tributes to an improvement of up to 37% in SM utilization
and 16% in memory utilization, while device-level control
introduces an additional improvement of 39% in SM utiliza-
tion and 17% in memory utilization. These findings strongly
emphasize the effectiveness of our multiplexing designs.

Optimality analysis. To validate the optimality of Mudi,
we profile additional samples and devise an Optimal baseline
by employing an exhaustive search method to select the best
colocation and configurations for both inference and training
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Figure 11. The accuracy of interference modeling for all
inference services. The note located to the left of the red line
at the top of each bar indicates the best prediction models.

tasks. A comparative analysis in the simulated cluster demon-
strates that Mudi’s inference SLO violation rate is nearly
equivalent to the Optimal baseline, as depicted in Fig. 8(b),
with an average discrepancy of only 5.86%. Meanwhile, in
Fig. 9(b), the training tasks in Mudi exhibit exceptional align-
ment with the optimal baseline in terms of CT, waitingT, and
makespan. These metrics deviate from the optimal values
by no more than 5%, underscoring that Mudi’s multiplexing
mechanism closely aligns with the optimal solution.

7.3 Microscopic Analysis
Accuracy of interference modeling. The accurate mod-
eling of interference is crucial for Mudi to make optimal
multiplexing decisions. To illustrate this, we utilized 70 of-
fline collected latency samples to train a dedicated model for
each parameter within the piece-wise linear function associ-
ated with each inference service. Additionally, we used 20
latency samples collected from the co-location with the last
four unobserved training tasks in Tab. 3 to fit the piece-wise
linear functions, with these parameters serving as the test set.
The prediction error is defined as Error = |𝑦𝑝𝑟𝑒𝑑−𝑦𝑡𝑟𝑢𝑒 |/𝑦𝑡𝑟𝑢𝑒 .
As shown in Fig. 11, all prediction errors fall below 0.3, with
the average prediction errors for 𝑘𝑖Ψ,1, 𝑘

𝑖
Ψ,2, △0, and 𝑙0 being

0.23, 0.16, 0.05, and 0.06, respectively. These results highlight
that Mudi can adapt well to unobserved training tasks by
leveraging the network architectures as prediction features.
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Figure 12. The prediction ac-
curacy of inference latency
increases as more samples
are included during learning.

We also assess the pre-
diction accuracy of E2E
latency as the number
of training samples in-
creases. When an infer-
ence service is co-located
with a new training task,
Mudi samples the infer-
ence latency under this
new co-location to fit
the corresponding piece-
wise function. The parameters of this function are then lever-
aged to perform incremental training for updating the In-
terference Predictor. Fig. 12 presents the results for training
sample sizes ranging from 30 to 90, showing that the pre-
diction error decreases from up to 0.6 to below 0.16 for all
inference services. These results highlight that Mudi can
become significantly more efficient by incorporating new
samples as new training tasks are introduced to the cluster.
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Figure 13. The benefits of individual optimization (solid
/hollow bar represents the physical/simulated cluster).

Effectiveness of cluster-level co-location. To evaluate
the advantage of cluster-wide multiplexing, we disabled the
Tuner service under Mudi. In Fig. 13(a), we normalized the
SLO violation rate, CT, and makespan to Mudi’s values for
comparison in the two clusters. The results demonstrate that
Mudi can reduce the CT by up to 1.33× and the makespan
by up to 1.26×, while achieving a lower SLO violation rate
of 1.3%/2.8% in physical/simulated cluster. Although this
cluster-wide optimization alone yields a higher SLO viola-
tion rate compared to the original two-level co-optimization
(by 1.65×/2.43× in physical/simulated cluster), it still sig-
nificantly outperforms baselines, with SLO violation rates
reduced by up to 1.74× in large-scale simulated cluster. These
findings highlight the effectiveness of Mudi’s cluster-level
co-location policy in selecting an optimal device for multi-
plexing, utilizing interference modeling for each inference.

Effectiveness of per device control. To assess the ef-
fectiveness of Mudi’s batching/GPU% tuning methods, we
replaced Mudi’s cluster-wide multiplexing method with ran-
dom task co-location. As shown in Fig. 13(b), Mudi achieves
the lowest SLO violation rate at 1.03%, which is 1.1× higher
than the original Mudi. This outstanding performance is at-
tributed to Mudi’s explicit quantification of inference latency.
Furthermore, Mudi demonstrates superior performance in
terms of CT and makespan for training tasks. Specifically,
the CT and makespan are up to 3.44×, 2.03× lower than the
baseline methods. These results indicate that Mudi’s tun-
ing mechanisms exhibit remarkable adaptability to dynamic
requests and significantly enhance training efficiency.

7.4 System Robustness
System throughput. Tomeasure the maximum throughput
while maintaining SLOs for inference services across differ-
ent systems, we conducted experiments where we gradually
increased the QPS rate until the SLOs were no longer met.
Simultaneously, training tasks were multiplexed and Mudi
allocates a partition of at least 10% of the GPU to facilitate
the seamless execution of these training tasks.

The maximum throughput that each system could support
for each inference service is presented in Fig. 14.We observed
thatMudi canmake themost use of GPU resources to achieve
the highest throughput of all inference services. Specifically,
Mudi achieves an increase in maximum throughput by up to
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Figure 15. Sensitivity to various inference loads.

78%, 103%, 67%, 89%, 85%, and 73% for ResNet50, Inception,
GPT2, BERT, RoBERTa, and YOLOS, respectively.

Sensitivity to heavy loads. To examine the response of
Mudi under heavy loads, we increased the request arrival
rates of all inference services by 2×, 3×, 4×. As shown in
Fig. 15, all systems experience higher SLO violations and
longer CTs for training tasks as QPS increases. However,
Mudi consistently surpasses other baselines in terms of main-
taining a lower SLO violation rate. Furthermore, as the QPS
increases, Mudi demonstrates a slower escalation in its SLO
violation rate compared to the baselines. These findings
strongly support Mudi’s superior ability to efficiently man-
age heavy workloads for inference services. Additionally,
Fig. 15(b) reveals that Mudi exhibits a nonlinear increase in
CT as the load intensifies, while gpulets and GSLCIE show-
case a linear increase due to the lack of cluster-wide opti-
mization. Consequently, co-located workloads experience
higher resource interference with these baselines.

Ability to handle bursty QPS.Our observations demon-
strate thatMudi is capable of handling bursty QPS rates while
ensuring SLOs. The ability of Mudi to rapidly respond to
bursty loads is exemplified through a case study using the
inference service ResNet50 and the training task YOLOv5, as
depicted in Fig. 16. At 100s, the QPS of ResNet50 momentar-
ily bursts to 3×. In response, the Tuner adjusts the batching
size (as shown in Fig. 16(a)) and GPU% to accommodate this
change, resulting in a very low SLO violation rate of 0.71%.
Additionally, due to GPU memory limitation, some memory
of YOLOv5 is swapped from device to host, as depicted in
Fig. 16(b). When the QPS decreases at 200s, the remaining
GPU memory and SMs are reclaimed for training. This data
swapping process incurs a minor transmission overhead be-
tween the host and the device, with the average transfer time
for the training task YOLOv5 observed to be 23.31ms.
Furthermore, the Memory Manager effectively addresses

the risk of GPU memory OOM errors as the batching size in-
creases. This memory-swapping capability is demonstrated
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Figure 16. Mudi’s behavior under bursty QPS.

Table 4.The fraction of timewhenmemory swapping occurs

ResNet50 Inception GPT2 BERT RoBERTa YOLOS
16.08% 19.82% 28.40% 15.53% 27.30% 33.43%

in Tab. 4 during bursty QPS scenarios. Notably, for ResNet50,
the performance of the workload remains stable even when
GPU memory usage exceeds capacity for approximately 16%
of the time. The frequency of situations where capacity is ex-
ceeded varies across different inference services, depending
on factors such as input and model sizes. For instance, YO-
LOS operates in an overcapacity state for over one-third of
the time; however, it successfully handles inference requests
without encountering any OOM errors.

Capability to handle more training tasks. We fitted
additional 90 piecewise linear functions for co-location pre-
diction and configuration tuning under the scenario of mul-
tiplexing more training tasks within a GPU. This enhanced
implementation, referred to as Mudi-more, is compared with
other two systems: 1) Random: which uses random place-
ment strategy and evenly distributes GPU resources among
all workloads, and 2) Mudi: which only allows multiplexing
one inference and one training.
The results depicted in Fig. 17 demonstrate that Mudi-

more outperforms the Random strategy across all evaluated
metrics. However, Mudi-more records a mean SLO violation
of 0.52%, which is 1.03× that of Mudi. Additionally, Mudi-
more shows a modest increase in CT (1.07×) and makespan
(1.09×) compared to Mudi. This is due to the increased
number of training tasks sharing the same GPU, requir-
ing Mudi to swap more GPU memory from the GPU to
the host (37.78%, which is 1.61× that of just one training
task) to maintain SLO compliance for inference requests.
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Figure 17. Mudi’s behavior
on multiplexing more train-
ing tasks in physical cluster.

This activity delays the
completion of train-
ing. Furthermore, the
interference between
co-located workloads is
more pronounced with
multiple training tasks,
leading to extended CT
and makespan. The aver-
age tuning/multiplexing
overhead with Mudi-more (18 iterations/16ms) is marginally
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Figure 18. The distribution of computational overhead.

greater (12.4%/14.3%) than Mudi in the physical cluster.
These overheads become significantly more noticeable
(18.8%/26.3%) in the large-scale simulated cluster, due to
a more dynamic system environment and a larger search
space of co-located patterns. Consequently, considering
both overhead and performance, it is advisable to use Mudi
for multiplexing one inference and one training task to
achieve optimal performance.

7.5 System Overhead
Tuning overhead. We have measured the search overhead
of GP-LCB. As illustrated in Fig. 18(a), GP-LCB converges
within 17 iterations in over half the cases. The search process
can be completed within a maximum of 24 iterations in a
physical cluster. In the simulated cluster, all tuning processes
require fewer than 25 iterations, averaging 16. These results
suggest that Mudi can quickly determine an optimal batching
size under dynamic QPS in less than 1.92 seconds, enhancing
training throughput while meeting SLO constraints. More-
over, the simulated-based results also demonstrate that Mudi
can scale well in large-scale clusters.

Multiplexing overhead. The multiplexing overhead in
Mudi primarily comes from the Online Prediction and Device
Selector. The results in Fig. 18(b) indicate that the overall time
when making cluster-wide multiplexing decisions is below
18ms, with an average of 14ms in physical cluster. And the
simulated-based results show this overhead is below 31ms
with an average 19ms. These findings indicate that Mudi is
capable of making real-time task assignments.

8 Related Work
Underlyingmultiplexing optimizations. To improve the
performance of multiplexing at a lower level, several studies
have investigated kernel-level control strategies [9, 65, 73,
80]. For example, AntMan [73] adjusts the timing of kernel
launches to maintain performance for high-priority work-
loads. Pilotfish [80] and other research efforts [9, 65] focus
on regulating the rate of kernel requests from low-priority
workloads. However, these approaches do not address inter-
ference mitigation at a cluster-wide level.
Interference-aware co-location. Several studies have in-
vestigated various techniques, such as collaborative filter-
ing [10, 11, 57], and BO [5, 50], to optimize multiplexing
for traditional cloud applications. Other works delve into
machine learning-based approaches to model co-location

interference [7, 9, 43, 74]. Nevertheless, these works do not
consider both dynamic batching and resource scaling, result-
ing in low resource efficiency. Additionally, some researchers
propose kernel padding scheduling [18, 21, 80] to mitigate
interference among all co-located DL applications. Never-
theless, implementing these techniques requires bespoke
modifications to DL frameworks such as TensorFlow.
Adaptive batching and dynamic resource partitioning.
Tuning the batching size or resource partition sizes adap-
tively to improve the performance of DL workloads has been
extensively studied in previous works [7, 8, 14, 30, 52, 61, 68,
74, 76]. For instance, Pollux [52] optimizes the batchsize and
number of GPU workers for training tasks to maximize good-
put, without considering multiplexing. INFaaS [58] and INF-
less [76] can automatically select batchsizes and hardware
settings based on users’ SLO requirements in serverless com-
puting. Morphling [68] employs meta-learning techniques to
efficiently configure batchsizes, GPU timeshare, GPU mem-
ory, and GPU types for each inference service. iGniter [74]
enhances GPU resource allocation by considering factors
such as GPU L2 cache profiles and GPU power consump-
tion among co-located applications. However, these systems
do not optimize task co-locations across the entire cluster,
which can easily result in sub-optimal performance.

9 Conclusion and Remarks
This paper presents Mudi, a novel multiplexing system that
optimizes both cluster-wide co-location and device-level in-
terference control. By efficiently multiplexing online infer-
ence services with DL training tasks across all GPU devices
within a cluster, Mudi enhances resource utilization while
guaranteeing inference SLOs and maximizing training task
throughput. Mudi leverages the quantification of inference
latency through a piece-wise linear function and a predictive
approach to estimate interference based on deep network ar-
chitectures. This allows Mudi to achieve global optimization
with rapid response to highly dynamic workloads.
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