
SMIless: Serving DAG-based Inference with
Dynamic Invocations under Serverless Computing

Chengzhi Lu, Huanle Xu*, Yudan Li, Wenyan Chen, Kejiang Ye,
Chengzhong Xu*

Ø Multi-stage ML serving application

• By incorporating multiple inference models

Provide Comprehensive Services

Intelligent Personal Assistant

Sound

Image

What is it?

It’s a Cheetah

Text

Text

Answer
Request
Parser

Multimodal
Request

What is it?

Ø ML serving applications suffer from dynamic request patterns

• Server centric deployment: resource overprovision

Leverage Serverless Computing

3
1

2
4 5

31 2 4 5
31
2 4 5

Server1

Bottleneck

Server2

Dynamic
req pattern

Server Centric Deployment

Highly dynamic request pattern of
ML inference application in a real-

world cluster [1]

[1] Yang, Yanan, et al. "INFless: a native serverless system for low-latency, high-throughput inference." ASPLOS’22

Ø ML serving applications suffer from dynamic request patterns

• Server centric deployment: resource overprovision

• Serverless computing: precisely tailor resource utilization of each function

Leverage Serverless Computing

3
1

2
4 5

21 3 4 5

3 51 2 4

Server

Inference function

4

Serverless Computing

Initialization

Keeping-aliveKeep alive

Invoke

2.

Pre-warm

Invoke

3.

Function behavior in serverless
computing

Dynamic
Req

Cold start

Invoke

1.

Ø Underlying hardware resources are undergoing heterogeneity

• Enhance the performance of ML applications

In Heterogeneous Environment

Inference functions

Req

Homogeneous Cluster

CPU Server CPU Server CPU Server

Inference functions

Req

Heterogeneous Cluster

CPU Server GPU Server CPU-FPGA Server …

Ø Get trade off between performance and cost with the heterogeneous

hardware for ML serving applications

In Heterogeneous Environment

0

2

4

6

8

Latency(s) Cost ($/h)

CPU (4 cores) GPU (V100)

Perf. VS Cost of heterogeneous hardware
in AWS serving the ResNet50 model

10x

16x

In Heterogeneous Environment

0

2

4

6

8

Latency(s) Cost ($/h)

CPU (4 cores) GPU (V100)

Perf. VS Cost of heterogeneous hardware
in AWS serving the ResNet50 model

10x

16x

3
1

2
4 5

Inference functions

Req

CPU Server GPU Server

Low performance
Low cost

High performance
High cost

Tradeoff

Ø Get trade off between performance and cost with the heterogeneous

hardware for ML serving applications

ØDesign resource provision policy
• for multi-stage ML serving applications

• on a serverless platform

• harnesses heterogeneous hardware

to reduce cost while keeping performance stable

Q2: Which and how many devices? (hardware configuration)

Q1: When start or stop instances? (cold start management)

Serving ML applications

Ø Cascading Effect in management of serverless ML serving application
• To satisfy E2E SLA, the policy of one function influences the selection of the policies of all

succeeding functions within a DAG application

Challenge

Ø Cascading Effect in management of serverless ML serving application
• To satisfy E2E SLA, the policy of one function influences the selection of the policies of all

succeeding functions within a DAG application

F1 F2

Cold + high
RT:6+1.5

Cold + low
RT:4+4

Warm + High
RT:1.5

Warm + Low
RT:4

F3

Challenge

Example Settings

SLA=9

execinit

F1 F2 F3 Min Latency=10 > SLA

Cold and low policy of F1 leads to the inevitable SLA violation!

Ø Cascading Effect in management of serverless ML serving application
• To satisfy E2E SLA, the policy of one function influences the selection of the policies of all

succeeding functions within a DAG application

F1 F2

Cold + high
RT:6+1.5

Cold + low
RT:4+4

Warm + High
RT:1.5

Warm + Low
RT:4

F3

Challenge

Example Settings

SLA=9

execinit

F1 F2 F3 Min Latency=10 > SLA

Latency=4.5 < SLA

Latency=8 < SLA

Latency=9.5 > SLA

F2

F2

F1 F3

F3

F2 F3 Latency=9.5 > SLA

F3

Cold and low policy of F1 leads to the inevitable SLA violation!

Cold start policy of F2 leads to the inevitable SLA violation!

Ø Dynamic Invocation Pattern further amplifies the cascading effect
• Policy that is optimal for a request may not be optimal for more requests in a dynamic context.

Challenge

Prefect overlap Need to create new instances Keeping alive is better

First request Second request

Idle
Initexecute Initexecute

Invoke
Invoke Invoke Invoke Invoke

[1] Mahgoub A, Yi E B, Shankar K, et al. ORION and the three rights: Sizing, bundling, and prewarming for serverless DAGs(OSDI’22).
[2] Roy R B, Patel T, Tiwari D. Icebreaker: Warming serverless functions better with heterogeneity (ASPLOS’22)

Limitation of Existing Works

F1

F2

F3 Orion[1]: Ignore dynamic request rate
Latency = 6.5, One Request Cost:42, Total Cost = 84

F1

F2

F3

Create new instances

Time

Init Execute Idle Init Execute IdleNorm. Cost

CPU GPU$1/s

Norm. Cost
$8/s

InvokeConcurrency

[1] Mahgoub A, Yi E B, Shankar K, et al. ORION and the three rights: Sizing, bundling, and prewarming for serverless DAGs(OSDI’22).
[2] Roy R B, Patel T, Tiwari D. Icebreaker: Warming serverless functions better with heterogeneity (ASPLOS’22)

Limitation of Existing Works

F1

F2

F3 Icebreaker[2]: Not DAG-awareness
Latency = 4.5, One Request Cost:47, Total Cost = 81

F1

F2

F3

Time

Init Execute Idle Init Execute IdleNorm. Cost

CPU GPU$1/s

Norm. Cost
$8/s

InvokeConcurrency

[1] Mahgoub A, Yi E B, Shankar K, et al. ORION and the three rights: Sizing, bundling, and prewarming for serverless DAGs(OSDI’22).
[2] Roy R B, Patel T, Tiwari D. Icebreaker: Warming serverless functions better with heterogeneity (ASPLOS’22)

Limitation of Existing Works

F1

F2

F3
Optimal: Cascading Effect + dynamic request pattern

Latency = 5.5, One Request Cost:45,Total Cost = 61

F1

F2

F3

Time

Init Execute Idle Init Execute IdleNorm. Cost

CPU GPU$1/s

Norm. Cost
$8/s

InvokeConcurrency

Path Search Based Co-optimization
Framework

Addressing the cascading effect through path
search formulation

Adaptive Cold-Start Management
Leveraging adaptive pre-warming to manage

dynamic invocations

Optimal Cascading
effect

Dynamic
request pattern

Our Solution

Key Idea2Key Idea1

Low cost
Stable performance

SMIless:a serverless framework for optimizing the execution of
ML serving applications with highly dynamic invocations

ØOffline Profiler
• Profiles inference and initialization time

ØOnline Predictor
• Predicts Inter-arrival time with Inter-arrival Time

Predictor
• Predicts invocation number by Invocation

Predictor

ØOptimizer Engine
• Parsing the workload and merging the result in

Workflow Manager
• Generate the optimized initialization and execution

strategies with Strategy Optimizer
• Auto-scaling the function instance for high request

rate with Auto-scaler

System Design-SMIless

Ø Profiling initialization time

• Support the design of the pre-warming policy of the function

Offline Profiler-SMIless

Ø Profiling initialization time

• Support the design of the pre-warming policy of the function

• Initialization of the function involves in three main steps for the CPU backend

and four for the GPU backend

Offline Profiler-SMIless

Remote Container
Repository

1. Access data

GPUs

CPUs

PCIe
controller

2. Load image files

4. Load
model into

GPU

Typical Function Initialization Process

3. Init dependency
(GPU: CUDA context…)

Remote Container
Repository

1. Access data

GPUs

CPUs

PCIe
controller

2. Load image files

4. Load
model into

GPU

Typical Function Initialization Process

3. Init dependency
(GPU: CUDA context…)

Ø Profiling initialization time
• Support the design of the pre-warming policy of the function

• Initialization of the function involves in three main steps for the CPU
backend and four for the GPU backend

• Fluctuate due to shared resources contention

• Based on the normal distribution as a robust measurement

Offline Profiler-SMIless

𝜇 + 𝑛𝜎

Resource
Content

Uncertainty

Ø Profiling inference time

• Avoid to profile a huge number of configurations

q Influenced by both hardware configuration and input batch size.

• Based on Amdahl’s Law:

q Capture the acceleration effect due to the excellent parallelism offered by deep learning frameworks

Offline Profiler-SMIless

Ø Profiling inference time

• Avoid to profile a huge number of configurations

q Influenced by both hardware configuration and input batch size.

• Based on Amdahl’s Law:

q Capture the acceleration effect due to the excellent parallelism offered by deep learning frameworks

q Independently obtained the 𝜆, 𝛼 ,𝛽 and 𝛾 for different types of hardware through curve-fitting

Offline Profiler-SMIless

𝜆×𝐵×
𝛼

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝑣𝑜𝑙𝑢𝑚𝑒 + 𝛽 + 𝛾

Accelerated
inference time

Non-accelerated time
(Code fetching, data transmission...)

Network
connection time

Perf.
Degradation

coefficient and
batch size

ØPredicting invocation number
• Divide invocation number into buckets

• Transform into classification problem

q Avoid under-estimation for SLA

10

1 11 18 3215 22 23

20 20 4020 30 30
Bucket Size=10Invocation

Number

LSTM

Invocation Number

Model

Output

Online Predictor-SMIless

Invocation Predictor

ØPredicting inter-arrival time
• Input both inter-arrival time and invocation number

q Improve the prediction accuracy
q Avoid the overestimation

• Consist of two individual LSTM modules

Online Predictor-SMIless

1 0 1 0 0 1

2 3

Invocation
Number

Inter-arrival time

Invocation Number Inter-arrival time

LSTM1 LSTM2

Activation Layer

Linear LayerModel
Output

Inter-arrival Time Predictor

min
{",$}

∑&'() 𝐶& ⋆& ,△& , s. t. ℒ𝑎𝑡𝑒𝑛𝑐𝑦 𝜒, 𝜑 ≤ 𝑆𝐿𝐴,

𝐶& ⋆& ,△& = 𝐸& ⋆& ,△& ⋅ 𝑈 ⋆&

ØCo-optimization Framework
• Minimize the overall execution cost of the application, while satisfying SLA

requirements

Optimization-SMIless

min
{",$}

∑&'() 𝐶& ⋆& ,△& , s. t. ℒ𝑎𝑡𝑒𝑛𝑐𝑦 𝜒, 𝜑 ≤ 𝑆𝐿𝐴,

𝐶& ⋆& ,△& = 𝐸& ⋆& ,△& ⋅ 𝑈 ⋆&

ØCo-optimization Framework
• Minimize the overall execution cost of the application, satisfying SLA requirements

Optimization-SMIless

⋆!	 is the hardware config
of function k and 𝜒	 are

that of all functions

△!	is the cold start policy of
function k and 𝜑 are that of all

functions

min
{",$}

∑&'() 𝐶& ⋆& ,△& , s. t. ℒ𝑎𝑡𝑒𝑛𝑐𝑦 𝜒, 𝜑 ≤ 𝑆𝐿𝐴,

𝐶& ⋆& ,△& = 𝐸& ⋆& ,△& ⋅ 𝑈 ⋆&

ØCo-optimization Framework
• Minimize the overall execution cost of the application, satisfying SLA requirements

Optimization-SMIless

⋆!	 is the hardware config
of function k and 𝜒	 are

that of all functions

△!	is the cold start policy of
function k and 𝜑 are that of all

functions

Cost of function k with
hardware config ⋆! and

cold start policy △!

Execution time of
function k with hardware
config ⋆! and cold start

policy △!

Unit execution cost of
function k with

hardware config ⋆!

min
{",$}

∑&'() 𝐶& ⋆& ,△& ,

	s. t. ℒ𝑎𝑡𝑒𝑛𝑐𝑦 𝜒, 𝜑 ≤ 𝑆𝐿𝐴,
𝐶& ⋆& ,△& = 𝐸& ⋆& ,△& ⋅ 𝑈 ⋆&

ØCo-optimization Framework
• Minimize the overall execution cost of the application, satisfying SLA requirements

Constrained Shortest
Path Problem

Minimize overall cost

Satisfying the SLA requirement

Optimization-SMIless

Cost of each function with given configuration

NP-Hard!

min
{",$}

∑&'() 𝐶& ⋆& ,△& ,

	s. t. ℒ𝑎𝑡𝑒𝑛𝑐𝑦 𝜒, 𝜑 ≤ 𝑆𝐿𝐴,
𝐶& ⋆& ,△& = 𝐸& ⋆& ,△& ⋅ 𝑈 ⋆&

ØCo-optimization Framework
• Minimize the overall execution cost of the application, satisfying SLA requirements

Constrained Shortest
Path ProblemNP-Hard!

Minimize overall cost

Satisfying the SLA requirement

Optimization-SMIless

Cost of each function with given configuration

Adaptive cold-start
management

Path Search Based Co-
optimization Framework

Ø Adaptive Cold-Start Management
• Case 1: Low invocation arrival rate

Optimization-SMIless

The initialization and inference time of the function can be perfectly overlapped with the inter-arrival time.

SLA

Inference

Init

Invoke
Pre-warming space

F1

F2

F1
F2 Time

Ø Adaptive Cold-Start Management
• Case 1: Low invocation arrival rate

Optimization-SMIless

The initialization and inference time of the function can be perfectly overlapped with the inter-arrival time.

SLA

Inference

Init

Invoke
Pre-warming space

F1

F2

F1
F2 Time

• Terminating and pre-warming the function to reduce cost
• The latency is the sum of the inference time of all functions
• The cost equals the product of the execution time and the unit cost 𝑈 ⋆ of the function

Ø Adaptive Cold-Start Management
• Case 1: Low invocation arrival rate

Optimization-SMIless

The initialization and inference time of the function can be perfectly overlapped with the inter-arrival time.

SLA

Inference

Init

Invoke
Pre-warming space

F1

F2

F1
F2 Time

• Terminating and pre-warming the function to reduce cost
• The latency is the sum of the inference time of all functions
• The cost equals the product of the execution time and the unit cost 𝑈 ⋆ of the function

Theorem 1: When 𝐼"+𝐼#< SLA and 𝑇" + 𝐼" < 𝐼𝑇 , the warming-up policy guarantees the minimum overall execution cost.

Ø Adaptive Cold-Start Management

• Case 2: High invocation arrival rate

Optimization-SMIless

Inference

Init

Invoke

Concurrency

The inter-arrival time cannot overlap the initialization but can overlap the inference of the function

F1

F2
SLA

F1
F2 Time

Ø Adaptive Cold-Start Management

• Case 2: High invocation arrival rate

Optimization-SMIless

Inference

Init

Invoke

Concurrency

F1

F2
SLA

F1
F2 Time

• Keeping alive the function to reduce cost
• The latency is the sum of the inference time of each function
• The cost equals the product of the inter-arrival time and the unit cost 𝑈 ⋆

The inter-arrival time cannot overlap the initialization but can overlap the inference of the function

Ø Adaptive Cold-Start Management

• Case 3: Very high invocation arrival rate

Optimization-SMIless

Inference

Init

Invoke

Concurrency

The inter-arrival time cannot overlap the inference of the function.

F1

F2
SLA

F1
F2

Time

Waiting time

Ø Adaptive Cold-Start Management

• Case 3: Very high invocation arrival rate

Optimization-SMIless

Inference

Init

Invoke

Concurrency

The inter-arrival time cannot overlap the inference of the function.

F1

F2
SLA

F1
F2

Time

• Batching invocations, using high-performance hardware and launching multiple instances to
reduce the inference time of the function to avoid the SLA violation

• The latency is the sum of the inference time of each function
• The cost equals the product of the inter-arrival time and the unit cost 𝑈 ⋆

Waiting time

Ø Path Search Based Co-optimization Framework

• Convert the optimization problem to a path search problem

Optimization-SMIless

Ø Path Search Based Co-optimization Framework

• Convert the optimization problem to a path search problem

Optimization-SMIless

F1 F2

High Perf.
High Cost

Low Perf.
Low Cost

F3

Trie Tree

Merge

Can only check the policy combination until
reaching the leaf node, high overhead

F1

F2

F3

F1

F2

F3

F1

F2

F3

F1

F2

F3 F3F3

F2

Latency>SLA?

Ø Path Search Based Co-optimization Framework

• Convert the optimization problem to a path search problem

• Provide opportunity to prune the tree before traverse to the leaf node, reduce overhead

Optimization-SMIless

𝑇!F1 F2

High Perf.
High cost

Low Perf.
Low cost

F3

Pinned
High Perf.

Pinned
Low Perf.

Latency is the sum of the
inference time of all functions.

(Adaptive cold start management)

Ø Path Search Based Co-optimization Framework

• Convert the optimization problem to a path search problem

• Provide opportunity to prune the tree before traverse to the leaf node, reduce overhead

Optimization-SMIless

F1 𝑇"" 𝑇"#

𝑇!F1 F2

High Perf.
High cost

Low Perf.
Low cost

F3

Pinned
High Perf.

Pinned
Low Perf.

Latency is the sum of the
inference time of all functions.

(Adaptive cold start management)

+𝑐!! =	ΔCost"!"→"!! +𝑐!$ = 	ΔCost"!"→"!#

Ø Path Search Based Co-optimization Framework

• Convert the optimization problem to a path search problem

• Provide opportunity to prune the tree before traverse to the leaf node, reduce overhead

Optimization-SMIless

F1

F2

Pin F1 𝑇""

𝑇#" 𝑇##

𝑇"#

𝑇!F1 F2

High Perf.
High cost

Low Perf.
Low cost

F3

Pinned
High Perf.

Pinned
Low Perf.

Latency is the sum of the
inference time of all functions.

(Adaptive cold start management)

+𝑐!! +𝑐!$

+𝑐$! +𝑐$$

Ø Path Search Based Co-optimization Framework

• Convert the optimization problem to a path search problem

• Provide opportunity to prune the tree before traverse to the leaf node, reduce overhead

Optimization-SMIless

F1

F2

F3

Pin F1

Latency >SLA?

𝑇""

𝑇#" 𝑇##

𝑇$" 𝑇$#

𝑇""

𝑇#" 𝑇##

𝑇$" 𝑇$#

Multi-way tree for co-
optimization

𝑇"# 𝑇""

𝑇!
𝑇!F1 F2

High Perf.
High cost

Low Perf.
Low cost

F3

Pinned
High Perf.

Pinned
Low Perf.

Latency is the sum of the
inference time of all functions.

(Adaptive cold start management)

+𝑐## +𝑐#"

+𝑐"# +𝑐""

+𝑐$# +𝑐$"

+𝑐!! +𝑐!$

Not satisfy the SLA

+𝑐""+𝑐"#

Ø Optimization for Simple Applications

• Use a path search process to solve it
q Combined BFS (Breadth-First Search) and DFS (Depth-First Search)

q With Top-K (Top-1 in SMIless) path search to balance the overhead and the effectiveness

𝑇%

Not satisfy the SLAAvailable Solution

Optimization-SMIless

𝐹#

𝐹"

𝐹$

Cost

< < <

Min Max

Ø Optimization for Simple Applications

• Use a path search process to solve it
q Combined BFS (Breadth-First Search) and DFS (Depth-First Search)

q With Top-K (Top-1 in SMIless) path search to balance the overhead and the effectiveness

𝑇%

+𝑐#$ 𝑇#$

𝑇##

𝐹#% →
𝐹##

𝐹#

𝐹#% → 𝐹#"

𝐹#%→ 𝐹#$

𝑇#"

Not satisfy the SLAAvailable Solution

Optimization-SMIless

𝐹#

𝐹"

𝐹$

Cost

< < <

Min Max

Ø Optimization for Simple Applications

• Use a path search process to solve it
q Combined BFS (Breadth-First Search) and DFS (Depth-First Search)

q With Top-K (Top-1 in SMIless) path search to balance the overhead and the effectiveness

𝑇%

+𝑐#$ 𝑇#$

𝑇##

𝐹#% →
𝐹##

𝐹#

𝐹#% → 𝐹#"

𝐹#%→ 𝐹#$

𝑇#" 𝑇$"

T$$
+𝑐$$

𝐹$

𝐹$ %→
𝐹
$ $

𝑇$#

Not satisfy the SLA

+𝑐""

𝑇""

𝑇"$

𝐹"

𝐹"
% →

𝐹"
"

𝑇"#

Available Solution

Optimization-SMIless

𝐹#

𝐹"

𝐹$

Cost

< < <

Min Max

Ø Optimization for Complex Applications

• High efficient for dynamic invocation patterns

• Heuristic strategy

Optimization-SMIless

Ø Optimization for Complex Applications

• High efficient for dynamic invocation patterns

• Heuristic strategy

q Decompose the complex DAG into multiple subgraphs
with simple DAG (by workflow manager, offline)

q Path search for each subgraph in parallel (online)

q Merge the results from all subgraphs with shortest
inference time

Optimization-SMIless

Ø Optimization for Complex Applications

• High efficient for dynamic invocation patterns

• Heuristic strategy

q Decompose the complex DAG into multiple subgraphs

with simple paths (by workflow manager, offline)

q Path search for each subgraph in parallel (online)

q Merge the results with shortest inference time

• Time complexity

q 𝑂 𝑁 ⋅ 𝑀 ⋅ log(𝑀) , N is the number of the functions of the

longest path, M is the number of hardware configuration

candidates

Optimization-SMIless

Ø Auto-scaler

• Keep the inference time stable when suffering high request rate

• Select ⋆. and B with minimal overall cost

• Use a Bisection method to efficiently determine the optimal solution

Optimizer Engine-SMIless

Request Scaling up

Scaling out

min
{⋆$,(}

𝐺
𝐵 ⋅ 𝐼𝑇 ⋅ 𝑈 ⋆*

	 𝑠. 𝑡. 𝜆×𝐵×
𝛼

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝑣𝑜𝑙𝑢𝑚𝑒 + 𝛽 + 𝛾 ≤ 𝐼+

G/B: instance number
G: predicted invocation number

𝐼+: required inference
time obtained from the

co-optimization algorithm

ØExperimental Setup
• Applications

q AMBER Alert, Image-Query, Voice Assistant

q Real world and widely used

• Load generator

q Azure Function Dataset[1]

q Scale down the interval from 1 min to 2s, spans 2h

• Baselines

q GrandSLAm[2], Icebreaker[3],Orion[4], Aquatope[5]

System Settings

Type Spec

Machine number 8

CPU/Mem 52-core Intel x86 Xeon
Gold 5320 * 2/ 128GB

GPU Nvidia 3090*1

CPU container 1,2 ...16 CPU cores

GPU container 10%, 20% ... 100%
GPU(with MPS)

CPU container price $x*0.034

GPU container price $x*3.06

[1] Shahrad M, Fonseca R, Goiri I, et al. Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud provider;(ATC’20)
[2] Kannan R S, Subramanian L, Raju A, et al. Grandslam: Guaranteeing slas for jobs in microservices execution frameworks(EuroSys’19)
[3] Roy R B, Patel T, Tiwari D. Icebreaker: Warming serverless functions better with heterogeneity(ASPLOS’22)
[4] Mahgoub A, Yi E B, Shankar K, et al. {ORION} and the three rights: Sizing, bundling, and prewarming for serverless {DAGs} (OSDI’22)
[5] Zhou Z, Zhang Y, Delimitrou C. Aquatope: Qos-and-uncertainty-aware resource management for multi-stage serverless workflows(ASPLOS’22)

Evaluation-SMIless

ØEnd-to-end Performance
• Almost no SLA violation, reduce SLA violation ratio by up to 40% compared to

baseline

• Reduce cost by up to 5.73× to Icebreaker

• Achieve the lowest cost and SLA violation ratio under different SLA settings

End to end result E2E performance under different SLA settings

Evaluation-SMIless

ØOffline Profiling
• SLA violations can be completely avoided with 3x uncertainty

• High accuracy of profiling inference time

ØOnline Prediction
• Both low estimation error for invocation number and inter-arrival time

Offline profiling results under SMIless Online prediction on invocation number and inter-arrival time

Evaluation-SMIless

Ø Adaptation to Bursty Arrivals

• Reduce the cost up to 3.56x while avoiding the SLA violation

Ø System Overhead

• 10x∼100x time cost reduction compared with other path search methods for co-

optimization

• Auto-scaling within less than 0.1ms for 1000 invocation numbers

Auto-scaling performance System overhead

Evaluation-SMIless

Serving ML Inference with Dynamic Invocations under Serverless

Computing

• Propose a new policy to adaptively manage the pre-warming with dynamic

request pattern

• Design an efficient path search algorithm to co-optimize the performance and

cost

• Achieve up to 5.73x reduction in the cost with stable application performance

Conclusion

Thanks & QA cz.lu@siat.ac.cn

