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Ø Multi-stage ML serving application

• By incorporating multiple inference models
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Ø ML serving applications suffer from dynamic request patterns

• Server centric deployment: resource overprovision

Leverage Serverless Computing
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[1] Yang, Yanan, et al. "INFless: a native serverless system for low-latency, high-throughput inference." ASPLOS’22 



Ø ML serving applications suffer from dynamic request patterns

• Server centric deployment: resource overprovision

• Serverless computing: precisely tailor resource utilization of each function

Leverage Serverless Computing
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Ø Underlying hardware resources are undergoing heterogeneity

• Enhance the performance of ML applications

In Heterogeneous Environment
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Ø Get trade off between performance and cost with the heterogeneous 

hardware for ML serving applications
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ØDesign resource provision policy
• for multi-stage ML serving applications

• on a serverless platform

• harnesses heterogeneous hardware

to reduce cost while keeping performance stable

Q2: Which and how many devices? (hardware configuration)

Q1: When start or stop instances? (cold start management)

Serving ML applications



Ø Cascading Effect in management of serverless ML serving application
• To satisfy E2E SLA, the policy of one function influences the selection of the policies of all 

succeeding functions within a DAG application

Challenge
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Ø Cascading Effect in management of serverless ML serving application
• To satisfy E2E SLA, the policy of one function influences the selection of the policies of all 

succeeding functions within a DAG application
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Example Settings

SLA=9
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Cold and low policy of F1 leads to the inevitable SLA violation!

Cold start policy of F2 leads to the inevitable SLA violation!



Ø Dynamic Invocation Pattern further amplifies the cascading effect
• Policy that is optimal for a request may not be optimal for more requests in a dynamic context. 

Challenge

Prefect overlap Need to create new instances Keeping alive is better
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[1] Mahgoub A, Yi E B, Shankar K, et al. ORION and the three rights: Sizing, bundling, and prewarming for serverless DAGs(OSDI’22).
[2] Roy R B, Patel T, Tiwari D. Icebreaker: Warming serverless functions better with heterogeneity (ASPLOS’22)
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Path Search Based Co-optimization 
Framework

Addressing the cascading effect through path 
search formulation

Adaptive Cold-Start Management
Leveraging adaptive pre-warming to manage 

dynamic invocations 

Optimal Cascading 
effect

Dynamic 
request pattern

Our Solution

Key Idea2Key Idea1

Low cost 
Stable performance

SMIless:a serverless framework for optimizing the execution of 
ML serving applications with highly dynamic invocations



ØOffline Profiler 
• Profiles inference and initialization time 

ØOnline Predictor 
• Predicts Inter-arrival time with Inter-arrival Time 

Predictor 
• Predicts  invocation number by Invocation 

Predictor

ØOptimizer Engine 
• Parsing the workload and merging the result in 

Workflow Manager
• Generate the optimized initialization and execution 

strategies with Strategy Optimizer
• Auto-scaling the function instance for high request 

rate with Auto-scaler

System Design-SMIless



Ø Profiling initialization time

• Support the design of the pre-warming policy of the function 

Offline Profiler-SMIless
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Ø Profiling initialization time
• Support the design of the pre-warming policy of the function 

• Initialization of the function involves in three main steps for the CPU 
backend and four for the GPU backend

• Fluctuate due to shared resources contention

• Based on the normal distribution as a robust measurement 

Offline Profiler-SMIless
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Ø Profiling inference time

• Avoid to profile a huge number of configurations 

q Influenced by both hardware configuration and input batch size.

• Based on Amdahl’s Law: 

q Capture the acceleration effect due to the excellent parallelism offered by deep learning frameworks

Offline Profiler-SMIless



Ø Profiling inference time

• Avoid to profile a huge number of configurations 

q Influenced by both hardware configuration and input batch size.

• Based on Amdahl’s Law: 

q Capture the acceleration effect due to the excellent parallelism offered by deep learning frameworks 

q Independently obtained the 𝜆, 𝛼 ,𝛽 and 𝛾 for different types of hardware through curve-fitting 

Offline Profiler-SMIless
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ØPredicting invocation number 
• Divide invocation number into buckets 

• Transform into classification problem

q Avoid under-estimation for SLA 

10

1 11 18 3215 22 23

20 20 4020 30 30
Bucket Size=10Invocation 

Number

LSTM

Invocation Number

Model

Output

Online Predictor-SMIless
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ØPredicting inter-arrival time 
• Input both inter-arrival time and invocation number

q Improve the prediction accuracy
q Avoid the overestimation

• Consist of two individual LSTM modules

Online Predictor-SMIless
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Activation Layer

Linear LayerModel
Output
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ØCo-optimization Framework
• Minimize the overall execution cost of the application, while satisfying SLA 

requirements

Optimization-SMIless
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Optimization-SMIless
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Ø Adaptive Cold-Start Management
• Case 1: Low invocation arrival rate
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Ø Adaptive Cold-Start Management
• Case 1: Low invocation arrival rate
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• Terminating and pre-warming the function to reduce cost
• The latency is the sum of the inference time of all functions
• The cost equals the product of the execution time and the unit cost 𝑈 ⋆  of the function 

Theorem 1: When 𝐼"+𝐼#< SLA and 𝑇" + 𝐼" < 𝐼𝑇 , the warming-up policy guarantees the minimum overall execution cost.



Ø Adaptive Cold-Start Management

• Case 2: High invocation arrival rate 

Optimization-SMIless
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Ø Adaptive Cold-Start Management

• Case 2: High invocation arrival rate 

Optimization-SMIless
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Ø Adaptive Cold-Start Management

• Case 3: Very high invocation arrival rate 
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Ø Adaptive Cold-Start Management

• Case 3: Very high invocation arrival rate 

Optimization-SMIless

Inference
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Concurrency

The inter-arrival time cannot overlap the inference of the function.
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Time

• Batching invocations, using high-performance hardware and launching multiple instances to 
reduce the inference time of the function to avoid the SLA violation

• The latency is the sum of the inference time of each function 
• The cost equals the product of the inter-arrival time and the unit cost 𝑈 ⋆

Waiting time
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• Convert the optimization problem to a path search problem
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Ø Path Search Based Co-optimization Framework

• Convert the optimization problem to a path search problem

• Provide opportunity to prune the tree before traverse to the leaf node, reduce overhead
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Ø Path Search Based Co-optimization Framework

• Convert the optimization problem to a path search problem

• Provide opportunity to prune the tree before traverse to the leaf node, reduce overhead
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Ø Path Search Based Co-optimization Framework

• Convert the optimization problem to a path search problem

• Provide opportunity to prune the tree before traverse to the leaf node, reduce overhead

Optimization-SMIless
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Ø Optimization for Simple Applications

• Use a path search process to solve it 
q Combined BFS (Breadth-First Search) and DFS (Depth-First Search)

q With Top-K (Top-1 in SMIless) path search to balance the overhead and the effectiveness
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Ø Optimization for Complex Applications

• High efficient for dynamic invocation patterns

• Heuristic strategy

Optimization-SMIless
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• High efficient for dynamic invocation patterns
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q Decompose the complex DAG into multiple subgraphs 
with simple DAG (by workflow manager, offline)

q Path search for each subgraph in parallel (online)

q Merge the results from all subgraphs with shortest 
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Ø Optimization for Complex Applications

• High efficient for dynamic invocation patterns

• Heuristic strategy

q Decompose the complex DAG into multiple subgraphs 

with simple paths (by workflow manager, offline)

q Path search for each subgraph in parallel (online)

q Merge the results with shortest inference time

• Time complexity 

q 𝑂 𝑁 ⋅ 𝑀 ⋅ log(𝑀) , N is the number of the functions of the 

longest path, M is the number of  hardware configuration 

candidates

Optimization-SMIless



Ø Auto-scaler

• Keep the inference time stable when suffering high request rate

• Select ⋆. and B with minimal overall cost

• Use a Bisection method to efficiently determine the optimal solution

Optimizer Engine-SMIless

Request Scaling up 

Scaling out 

min
{⋆$,(}

𝐺
𝐵 ⋅ 𝐼𝑇 ⋅ 𝑈 ⋆*  

	 𝑠. 𝑡. 𝜆×𝐵×
𝛼

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝑣𝑜𝑙𝑢𝑚𝑒 + 𝛽 + 𝛾 ≤ 𝐼+

G/B: instance number
G: predicted invocation number

𝐼+: required inference 
time obtained from the 

co-optimization algorithm



ØExperimental Setup 
• Applications 

q AMBER Alert, Image-Query, Voice Assistant

q Real world and widely used

• Load generator

q Azure Function Dataset[1] 

q Scale down the interval from 1 min to 2s, spans 2h

• Baselines

q GrandSLAm[2], Icebreaker[3],Orion[4], Aquatope[5]

System Settings

Type Spec

Machine number 8

CPU/Mem 52-core Intel x86 Xeon 
Gold 5320 * 2/ 128GB

GPU Nvidia 3090*1

CPU container 1,2 ...16 CPU cores

GPU container 10%, 20% ... 100% 
GPU(with MPS)

CPU container price $x*0.034 

GPU container price $x*3.06 

[1] Shahrad M, Fonseca R, Goiri I, et al. Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud provider;(ATC’20)
[2] Kannan R S, Subramanian L, Raju A, et al. Grandslam: Guaranteeing slas for jobs in microservices execution frameworks(EuroSys’19)
[3] Roy R B, Patel T, Tiwari D. Icebreaker: Warming serverless functions better with heterogeneity(ASPLOS’22)
[4] Mahgoub A, Yi E B, Shankar K, et al. {ORION} and the three rights: Sizing, bundling, and prewarming for serverless {DAGs} (OSDI’22)
[5] Zhou Z, Zhang Y, Delimitrou C. Aquatope: Qos-and-uncertainty-aware resource management for multi-stage serverless workflows(ASPLOS’22)

Evaluation-SMIless



ØEnd-to-end Performance
• Almost no SLA violation, reduce SLA violation ratio by up to 40% compared to 

baseline

• Reduce cost by up to 5.73× to Icebreaker

• Achieve the lowest cost and SLA violation ratio under different SLA settings

End to end result E2E performance under different SLA settings

Evaluation-SMIless



ØOffline Profiling
• SLA violations can be completely avoided with 3x uncertainty

• High accuracy of profiling inference time

ØOnline Prediction
• Both low estimation error for invocation number and inter-arrival time

Offline profiling results under SMIless Online prediction on invocation number and inter-arrival time

Evaluation-SMIless



Ø Adaptation to Bursty Arrivals 

• Reduce the cost up to 3.56x while avoiding the SLA violation

Ø System Overhead

• 10x∼100x time cost reduction compared with other path search methods for co-

optimization

• Auto-scaling within less than 0.1ms for 1000 invocation numbers

Auto-scaling performance System overhead 

Evaluation-SMIless



Serving ML Inference with Dynamic Invocations under Serverless 

Computing

• Propose a new policy to adaptively manage the pre-warming with dynamic 

request pattern

• Design an efficient path search algorithm to co-optimize the performance and 

cost

• Achieve up to 5.73x reduction in the cost with stable application performance

Conclusion
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